K2K - KEK to Kamioka- Long Baseline Neutrino Oscillation Experiment |
Recent Results From K2K (KEK to Kamioka Long Baseline Neutrino Oscillation Experiment) |
|||||||||||||||||||||
|
|||||||||||||||||||||
FOR RELEASE: |
|||||||||||||||||||||
Summary K2K is an international collaboration of physicists, organized to study the properties of the subatomic particles called neutrinos. A neutrino beam is generated at KEK, the Japanese National High Energy Accelerator Laboratory in Tsukuba, Japan, and directed through the Earth to the Super-Kamiokande underground neutrino detector, located about 250km away. Using data collected through February, 2004, K2K has observed 108 beam-induced neutrino interactions in Super-Kamiokande. In the absence of the phenomenon called neutrino oscillations, which implies that neutrinos have mass, the expected number of such events would be 150.9 (+11.6, -10.0) showing appearant deficit of the observed data. However, the K2K data are consistent with the oscillation effects previously reported by Super-Kamiokande, using data from naturally-produced (atmospheric) neutrinos. K2K also reported the first significant evidence for the energy dependence of the oscillation effect, which is an expected consequence of the oscillation phenomenon. Taking into account measurements of the beam obtained from "near" detectors on the KEK site, the probability that the observed data are consistent with the hypothesis of no oscillations (hence, massless neutrinos) is negligible (10-4). K2K expects to increase the number of observed events by about 30% during the next year, before the anticipated shutdown of the KEK proton accelerator in 2005. These additional data will include special studies needed to refine plans for the next-generation experiment at the new J-PARC accelerator facility under construction in Tokaimura, Japan. |
Details: Goals of the experimentIn 1998, clear evidence for neutrino oscillations was first reported in studies of atmospheric neutrinos by Super-Kamiokande. Neutrino oscillation occurs among the three known “flavors” of neutrinos when neutrinos have non-zero mass and mixing. Under these circumstances, flavor states are mixtures of mass states, and a neutrino may change its apparent flavor with time, for example during the time of flight from KEK to Kamioka. Neutrino masses were assumed to be zero in the current standard model of elementary particle physics. The discovery of neutrino oscillations and hence non-zero neutrino masses requires a theory beyond the standard model, and the apparent smallness of the neutrino masses indicates physics with a large energy scale. The aim of the K2K experiment is to confirm the neutrino oscillation phenomena observed with atmospheric neutrinos, and more precisely determine the neutrino oscillation parameters (mass differences and mixing angles). The experimental method The K2K neutrino beam is
produced by the 12 GeV proton accelerator at KEK. These artificially created
neutrinos are almost entirely muon-neutrinos, as confirmed by data from the near
detectors at KEK, which measure the neutrino flux and energy spectrum
immediately after production, and before neutrino oscillation effects become
visible. The beam was directed towards the Super-Kamiokande detector located
250km away from KEK. The energy spectrum of the neutrino beam is similar to that
of atmospheric neutrinos, and the long baseline of the experiment allows us to
test neutrino oscillations effects observed in atmospheric neutrinos. The K2K
experiment is the first truly long baseline neutrino oscillation experiment, in
which a neutrino beam was directed to a distant off-site detector. Neutrino beam pulses, of duration a few millionths of a second, were sent from KEK to Super-Kamiokande every 2.2 sec. The pulsed time structure of the beam made it possible to distinguish the interactions of beam neutrinos from those of cosmic ray (atmospheric) neutrinos, which arrive randomly in time.
Conclusions Based on these results, we have concluded that
Future K2K will have an additional beam run starting in October, 2004. The ending date may be in March, 2005. While the new data will not significantly increase the overall statistical weight of the experiment, it will be very important for several investigations of detector response and systematics. The KEK 12 GeV proton synchrotron will be shut down in 2005, in order to make equipment and human resources available for construction of the new J-PARC 50 GeV proton accelerator, currently under construction at Tokaimura. One of the main experiments planned for J-PARC is T2K (Tokai to Kamioka), the next-generation long baseline neutrino experiment. The new accelerator will provide an effective factor of 100 increase in event rates, permitting much more detailed investigations of neutrino oscillations and related phenomena. A new Scintillating Bar (SciBar) detector system was installed in the K2K near detector, and commissioned in September, 2003. Scibar was intended in part as an in-service prototype for a critical detector element in the T2K experiment. The 2004-5 K2K run will significantly increase the available SciBar data. We will also perform studies of beam targeting and control, in preparation for T2K. Finally, we will use the next run to complete a variety of background and calibration measurements on the K2K near detectors. K2K and T2K explore fundamental questions in particle physics and astrophysics. However there are still many unresolved issues in these fields, for example the discovery of CP violation, which is closely related to the origin of the asymmetry of matter and anti-matter in the universe. We will continue to challenge those puzzles in near future. |
www-admin(a)neutrino.kek.jp Last modified: Mon Jun 7 08:34:20 JST 2004 |
|