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(1) Gauge Unification in 6D

Grand unified theories (GUTs) are natural extension of the standard model;
quarks and leptons form SU(5) multiplets (Georgi, Glashow ’74),

10 = (qL, uc
R, e

c
R) , 5∗ = (dc

R, lL) , (1 = νR) ,

or SU(4)×SU(2)×SU(2) multiplets (Pati, Salam ’74),

(4,2,1) = (qL, lL) , (4∗,1,2) = (uc
R, d

c
R, ν

c
R, e

c
R) ;

all quarks and leptons of one generation are unified in a single multiplet in
the GUT group SO(10) (Georgi; Fritsch, Minkowski ’75),

16 = 10 + 5∗ + 1 = (4,2,1) + (4∗,1,2) .
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Orbifold compactifications are familiar from string theories (Dixon, Harvey, Vafa,

Witten ’85); recent application to GUT field theories (Kawamura; Altarelli, Feruglio; Hall,

Nomura; Hebecker, March-Russell;...). GUT symmetry breaking automatically yields
the required doublet-triplet splitting of Higgs fields. Several successful
models SU(5) models have been constructed in 5 dimensions; 6 dimensions
are attractive for the breaking of SO(10) (ABC; Hall, Nomura, Okui, Smith;...), but
not unavoidable (Dermisek, Mafi; Kim, Raby;...).

Consider SO(10) gauge theory in 6D with N=2 supersymmetry. The gauge
fields VM(x, y, z), with M = µ, 5, 6, x5 = y, x6 = z, and the gauginos λ1,
λ2 can be grouped into vector and chiral multiplets of the unbroken N=1
supersymmetry in 4D,

V = (Vµ, λ1) , Σ = (V5,6, λ2) .

V and Σ are matrices in the adjoint representation of SO(10). Symmetry
breaking is achieved by compactification on T 2/(ZI

2 × ZPS
2 × ZGG

2 ). The
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discrete symmetries Z2 break the extended supersymmetry; they also break
the SO(10) bulk gauge group to the different subgroups

GPS = SU(4) × SU(2) × SU(2) , GGG = SU(5) × U(1)X .

GGG GG PS

SO(10)

SM’
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The breaking is localized at different points in the extra dimensions, O =
(0, 0), OPS = (πR5/2, 0) and OGG = (0, πR6/2),

PIV (x,−y,−z)P−1
I = ηIV (x, y, z) ,

PPSV (x,−y + πR5/2,−z)P−1
PS = ηPSV (x, y + πR5/2, z) ,

PGGV (x,−y,−z + πR6/2)P−1
GG = ηGGV (x, y, z + πR6/2) .

Here PI = I, the matrices PPS and PGG break SO(10) to GPS and GGG,
and the parities are chosen as ηI = ηPS = ηGG = +1. The extended
supersymmetry is broken by choosing in the corresponding equations for Σ
all parities ηi = −1. There is a fourth fixpoint at Ofl = (πR5/2, πR6/2),
which is obtained by combining the three discrete symmetries Z2, Z

PS
2 and

ZGG
2 defined above,

PflV (x,−y + πR5/2,−z + πR6/2)P−1
fl = +V (x, y,+πR5/2, z + πR6/2) .
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The fourth unbroken subgroup at the fixpoint Ofl is flipped SU(5), i.e.
Gfl=SU(5)′×U(1)′. The physical region is a ‘pillow’ with the four fixpoints
as corners.

z

z

πR5

OGG Ofl

OPSO−πR5

πR6

-πR6

6

5
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The unbroken gauge group of the effective 4D theory is given by the
intersection of the SO(10) subgroups at the fixpoints. In this way one
obtains the standard model group with an additional U(1) factor,

GSM ′ = SU(3) × SU(2) × U(1)Y × U(1)X .

The difference of baryon and lepton number is the linear combination

B − L =
√

16
15Y −

√
8
5X . The zero modes of the vector multiplet V form

the gauge fields of GSM ′.

The vector multiplet V is a 45-plet of SO(10) which has an irreducible
anomaly in 6 dimensions. It is related to the irreducible anomalies of
hypermultiplets in the fundamental and the spinor representations,

a(45) = −2a(10) , a(16) = a(16∗) = −a(10) .
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Anomaly cancellation requires two 10 hypermultiplets, H1 andH2. Possible
choice of SU(2) doublets as zero modes, i.e., doublet-triplet splitting,

Hc
1 = Hd , H2 = Hu ,

yields wanted Higgs doublets of MSSM. Flat direction, 〈Hc
1〉 = 〈H2〉 = v,

may be stabilized at electroweak scale by supersymmetry breaking at brane.

B − L breaking can be achieved by flat direction of additional 16
hypermultiplets Φc, Φ with zero modes N c, N ,

〈N c〉 = 〈N〉 = vN ,

with vN � v fixed by brane superpotential. Anomaly cancellation requires
two 10 hypermultiplets H3, H4. Colour triplet zero modes (D,Gc) and
(Dc, G) aquire masses O(vN) from brane superpotential.
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(2) Flavour mixing and seesaw mechanism

How can matter be introduced ? Guiding principles: anomaly cancellation,
embedding in E8. Quarks and leptons cannot be bulk fields, too many
16-plets required, they have to be brane fields.

As an example, place ψ1 at OGG, ψ2 at Ofl and ψ3 at OPS. The three
‘families’ are separated by distances large compared to the 6D cutoff scale
M∗; they can only have diagonal Yukawa couplings with the bulk Higgs
fields, direct mixings are exponentially suppressed.

However, brane fields can mix with bulk zero modes without suppression.
E8 embedding allows two additional 10 hypermultiplets H5, H6, together
with two 16’s, φ and φc, with zero modes,

L =
(
ν4
e4

)
, Lc =

(
νc
4

ec
4

)
, Gc

5 = dc
4 , G6 = d4 .
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Mixings take place only among left-handed leptons and right-handed down-
quarks (cf. lopsided SU(5) models). This leads to a characteristic pattern
of mass matrices.

Masses and mixings are determined by brane superpotentials. Allowed terms
are restricted by R-invariance and an additional U(1)X̃ symmetry. H1, H2,
Φ and Φc, which aquire a vacuum expectation value, have R-charge zero.
All matter fields have R-charge one. The 16-plets ψi and φ form a
quartet (ψα) = (ψi, φ), α = 1 . . . 4. Most general brane superpotential, for
normalized bulk fields, up to quartic interactions (23 terms),

W = M l
αψαφ

c +
1
2
h

(1)
αβψαψβH1 +

1
2
h

(2)
αβψαψβH2

+
1
2
hN

αβ

M∗
ψαψβΦcΦc + . . . ;
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M∗ > 1/R5,6 ∼ ΛGUT is the cutoff of the 6d theory. On the different
branes the Yukawa couplings h(1) and h(2) split into hd, he and hu, hD,
respectively.

B − L breaking yields masses O(vN) for colour triplet bulk zero modes.
After electroweak symmetry breaking, 〈Hc

1〉 = v1, 〈H2〉 = v2, all zero modes
aquire mass terms,

W = dαm
d
αβd

c
β + ec

αm
e
αβeβ + nc

αm
D
αβνβ

+uc
im

u
ijuj +

1
2
nc

iMijn
c
j .

Some of the mass matrix elements are equal due to GUT relations on
the corresponding brane, others are not; e.g. me

11 = md
11, m

e
22 �= md

22,
mD

22 = mu
22, etc.
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md, me and mD are 4 × 4 matrices, e.g.,

me =




hd
11v1 0 0 he

14v1
0 he

22v1 0 he
24v1

0 0 hd
33v1 he

34v1
M l

1 M l
2 M l

3 M l
4


 ;

mu and mN are diagonal 3 × 3 matrices,

mu =


 hu

11v2 0 0
0 hu

22v2 0
0 0 hu

33v2


 , mN =




hN
11

v2
N

M∗ 0 0

0 hN
22

v2
N

M∗ 0

0 0 hN
33

v2
N

M∗


 .

The diagonal elements satisfy four GUT relations which correspond to the
unbroken SU(5), flipped SU(5) and Pati-Salam subgroups of SO(10).
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General pattern of quark and lepton mass matrices, assuming universal
Yukawa couplings at each fixpoint,

1
tanβ

mu ∼ v1M∗
v2

N

mN ∼

 µ1 0 0

0 µ2 0
0 0 µ3


 ,

md ∼ me ∼ mD ∼




µ1 0 0 µ̃1

0 µ2 0 µ̃2

0 0 µ3 µ̃3

M̃1 M̃2 M̃3 M̃4


 ,

with µi, µ̃i = O(v1) and M̃i = O(ΛGUT ). Phenomenology requires µi, µ̃i

to be hierarchical, the GUT mixings M̃i are assumed to be non-hierarchical.
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Up-quark and heavy neutrino masses,

µ1 : µ2 : µ3 ∼ mu : mc : mt ∼M1 : M2 : M3 .

Down-quark masses and CKM mixings for large tanβ = v2/v1 � 50, such
that hd

33 � hu
33; dominated by off-diagonal elements µ̃i, since down-quark

hierarchy much smaller than upp-quark hierarchy,

µ1 � µ̃1 , µ2 � µ̃2 , µ3 ∼ µ̃3 .

Determination of parameters,

mb � µ̃3 , ms � µ̃2 , Vus = Θc ∼ µ̃1

µ̃2
;
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Predictions of mixing angles from diagonalization of md,

Vcb ∼ ms

mb
� 2 × 10−2 , Vub ∼ Θc

ms

mb
� 4 × 10−3 ,

and down-quark mass,

md

ms
∼ γ Θc � 0.03 , γ ∼ µ2

µ̃2
∼ mcmb

mtms
∼ 0.1 ,

consistent with data within factor of two. Charged lepton masses also o.k.;
small electron mass, me/mµ � 0.1 md/ms, not a problem since no SU(5)
mass relation on flipped-SU(5) brane.

The light neutrino masses are given by the seesaw relation

mν = −mDT 1
MN

mD .
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The structure of the charged lepton and the Dirac neutrino mass matrices
is the same; both matrices lead to large mixings between the ‘left-handed’
states. However, due to seesaw mechanism, mismatch and large remaining
leptonic MNS mixings. mν in basis where me is hierarchical,

mν ∼

 γ2 γ γ

γ 1 1
γ 1 1


m3 ;

result familiar from lopsided SU(5) models (Sato,Yanagida; Irges, Lavignac, Ramond;

Altarelli, Feruglio;...); characteristic prediction is a rather large 1-3 mixing angle,
Θ13 ∼ γ ∼ 0.1. Coefficients O(1) are consistent with ‘sequential heavy
neutrino dominance’ (N3), yielding large 2-3 mixing, sin 2Θ23 ∼ 1.

With m3 �
√

∆m2
atm ∼ m2

t/M3 the heavy Majorana masses are
M3 ∼ 1015 GeV, M2 ∼ 3 × 1012 GeV and M1 ∼ 1010 GeV; the
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second neutrino mass is m2 ∼ 0.01 eV. One also abtains the CP-
asymmetry ε1 ∼ 0.1 M1/M3 ∼ 10−6 and the effective neutrino mass
m̃1 = (mD†mD)11/M1 ∼ 0.2 m3 ∼ 0.01 eV, i.e. the standard parameters
of thermal leptogenesis (WB, Plümacher). Neutrino phenomenology is fixed in
terms of quark masses and mixings.

Fundamental question in flavour physics: different mass and mixing patterns
for quarks and neutrinos, compatibility with grand unification; answer in 6D
orbifold GUT:

• MNS mixings are large because neutrinos are mixtures of brane and bulk
states, which is unrelated to the hierarchy of quark and charged lepton
masses.

• CKM mixings are small because left-handed down-quarks are brane
states. The large mixings of right-handed down quarks, together with
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the down-quark mass hierarchy, implies small mixings for left-handed
quarks.

• Neutrinos have a small mass hierarchy because of the seesaw mechanism
and the mass relations md ∼ mD, mu ∼ mN ; the ‘squared’ down-quark
hierarchy is almost canceled by the larger up-quark hierarchy,

m1

m3
∼

(
md

mb

)2
mt

mu
∼ 0.1 .

Basic mechanism: mixing with split multiplets breaks GUT relations for mass
matrices; mass hierarchies have ‘geometric origin’ and are not explained by
abelian or non-abelian flavour symmetry.
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(3) Proton decay

As in 5D SU(5) models, dangerous dimension-5 operators for proton decay
are absent; the dimension-6 operator has an interesting flavour structure
due to the localization of brane fields (Nomura; Hebecker, March-Russell); in the 6D
SO(10) model only the fields localized on the SU(5) brane contribute,

Leff =
g2
4

M2
X
εαβγ

(
ec
1u

c
1αq1βq1γ − dc

1αu
c
1βq1γl1

)
.

The summation over Kaluza-Klein states is logarithmically divergent and
depends on the cutoff M∗ ∼ 1017 GeV (R5 = R6 = 1/Mc),

∞∑
n,m=0

1
M2

X (n,m)
� 1
M2

c

(
π

8
ln

(
M∗
Mc

)
+ C

)
.

19



Branching ratios depend on overlap of SU(5)-brane states with mass
eigenstates, dc

1 = Ud
R1id̂

c
i , e1 = Ue

L1iêi, etc, explicitly known in 6D SO(10)
model. Bound on compactification scale from dominant decay mode,

1
Γ(p→ e+π0)

= (8 × 1034 yr)
(

Mc

1016 GeV

)4 (
ln
M∗
Mc

)−2

;

the Super-Kamiokande bound of 5.3×1033 yr yields Mc ≥ 0.8×1016 GeV,
close to usual unification scale 2 × 1016 GeV (M∗ � 1017 GeV).

Branching ratios for 4D SU(5) theory and 6D SO(10) model are different!

π0e+ π0µ+ π0ν K0e+ K0µ+ K+ν
BR[%] 6D SO(10) 88 4 7 1 0.1 0.1
BR[%] 4D SU(5) 64 0.6 25 0.2 9 0.8
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(4) Towards E8 in higher dimensions

Our work has partly been motivated by previous attempts to relate
quarks and leptons to a coset space G/H, where G is an appropriate
simple group and H contains the standard model gauge group (WB, Love,

Peccei, Yanagida ’82; Ong ’83;...; Groot Nibbelink, van Holten). Attractive coset space is
E8/SO(10)×SU(3)×U(1) with complex structure

Ω = (16,3)1 + (16∗,1)3 + (10,3∗)2 + (1,3)4 .

Interpretation of 4D supersymmetric σ-model: three 16 quark-lepton
generations, one mirror 16∗ generation, additinal 10 Higgs fields and
SO(10) singlets; intriguing extension of SM, but phenomenologically too
many fields. Possible role of coset for orbifold GUTs unclear; open questions:
bulk fields and/or brane fields, spontaneous breaking of E8, etc ?
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Features of bottom-up approach. Consider SO(10) content of E8 adjoint
representation,

248 = 45 + 4 × 16 + 4 × 16∗ + 6 × 10 + . . . .

Anomaly cancellation of 6D SO(10) model requires 2 10 hypermultiplets;
2 (10 + 16∗) hypermultiplets are used for B − L breaking, 2 (10 +
16∗) hypermultiplets are needed for flavour mixing. Bulk anomalies of the
remaining 4 16’s are not canceled, are they localized on the branes? This
would be almost the considered model. Is one 16 heavy or decoupled?

Can the 6D SO(10) model be obtained from E8 super Yang-Mills theory in
10D? What leads to the breaking of E8 to SO(10)? Which dynamics implies
the symmetry breaking at the orbifold fixpoints? Are there consistency
conditions which relate brane fields to bulk fields? Does the embedding in
the adjoint representation of E8 make any sense (cf. string theories)? etc.
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SUMMARY

Higher dimensions offer elegant way of GUT symmetry breaking; split
multiplets are simple explanation of doublet-triplet splitting.

Together with a geometric origin of fermion mass hierarchies, split multiplets
also lead to interesting flavour physics.

This motivates further studies on the embedding of 6D SO(10) GUT in
higher dimensional E8 unified theory.

Ofl

OPS

[G    ]GG [G  ]fl

[G   ]PS[SO(10)]

OGG

OI
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