Curvaton mechanism and its implications to (s)neutrino cosmology

Takeo Moroi (Tohoku)

<u>Outline</u>

- 1. Introduction
- 2. Curvaton Mechanism
- 3. A Possible Signal
- 4. Summary

1. Introduction

One of the important issues in cosmology

Origin of the cosmic density fluctuations

Our universe:

- Almost homogeneous and isotropic at large scale
- There are various structures at small scale
- CMB has anisotropy

$$\langle \Delta T(\vec{x}, \vec{\gamma}) \Delta T(\vec{x}, \vec{\gamma}') \rangle_{\vec{x}} = \frac{1}{4\pi} \sum_{l} (2l+1) C_l P_l(\vec{\gamma} \cdot \vec{\gamma}')$$

 $C_l: \text{ CMB anisotropy at angular scale } \theta \simeq \pi/l$

The conventional origin of the density fluctuations

Primordial fluctuation of the inflaton

Today, I will discuss another possibility

Curvaton mechanism

[Enqvist & Sloth; Lyth & Wands; Moroi & Takahashi]

- Primordial fluctuation of a scalar field ϕ (called "curvaton") generates density fluctuations
- Constraints on the inflaton potential is relaxed

There are scalar fields whose condensation may dominate the universe at some epoch

- Right-handed sneutrino
- Cosmological moduli fields
- Affleck-Dine field
- Flat directions in SUSY models
- Pseudo-NG boson
- • •

If these fields acquire primordial fluctuation, it also becomes the source of cosmic density fluctuations

 \Rightarrow If so, what happens?

2. The Curvaton Scenario

- 1. In the early universe, $\phi \neq 0$
- 2. ϕ starts to oscillate as the universe expands $\Rightarrow \rho_{\phi} \propto a^{-3}$ $\Rightarrow \rho_{\phi}$ takes over ρ_{rad} at some epoch
- 3. The ϕ field decays and reheats the universe

 \Rightarrow CMB (and other components) we observe today originates from ϕ

During inflation, ϕ acquires fluctuation if $m_{\phi} \ll H_{\rm inf}$

$$\delta\phi(k)\simeq \frac{H_{\rm inf}}{2\pi}$$

 $\delta\phi$ produces cosmic density fluctuations:

• $ds^2 = (1+2\Psi)dt^2 - a^2(1+2\Phi)d\vec{x}^2$

•
$$T = T_{\mathsf{CMB}} + \Delta T$$

• • • •

There are two sources of fluctuations: $\delta\chi_{\rm inf}$ and $\delta\phi$

$$\Rightarrow \Psi = \Psi^{(\inf)} + \Psi^{(\delta\phi)}$$

with $\Psi^{(\inf)} \propto \delta \chi_{\inf}$ and $\Psi^{(\delta\phi)} \propto \delta \phi_{\inf}$
$$\Rightarrow \Delta T = \Delta T^{(\inf)} + \Delta T^{(\delta\phi)}$$

with $\Delta T^{(\inf)} \propto \delta \chi_{\inf}$ and $\Delta T^{(\delta\phi)} \propto \delta \phi_{\inf}$
Inflaton contribution ($\Psi^{(\inf)}$, $\Delta T^{(\inf)} \cdots$)

• Same as the usual case

Curvaton contribution ($\Psi^{(\delta\phi)}, \Delta T^{(\delta\phi)} \cdots$)

• All fluctuations from $\delta\phi_{\rm init}$ are proportional to $S_{\phi\chi}$

$$S_{\phi\chi} \equiv \left[\frac{\delta\rho_{\phi}}{\rho_{\phi}}\right]_{\text{init}} = \frac{2\delta\phi_{\text{init}}}{\phi_{\text{init}}}$$

In the curvaton scenario, there are two sources of cosmic density fluctuations

$$\Psi_{\mathsf{RD2}}^{(\mathsf{inf})}(k) = \frac{2}{3} \left[\frac{3H_{\mathsf{inf}}^2}{V_{\mathsf{inf}}'} \delta\chi_{\mathsf{inf}} \right]_{k=aH} = \frac{2}{3} \left[\frac{3H_{\mathsf{inf}}^2}{V_{\mathsf{inf}}'} \times \frac{H_{\mathsf{inf}}}{2\pi} \right]_{k=aH}$$
$$\Psi_{\mathsf{RD2}}^{(\delta\phi)}(k) = -\frac{4}{9} \left[\frac{\delta\phi_{\mathsf{init}}}{\phi_{\mathsf{init}}} \right]_{k=aH} = -\frac{4}{9} \left[\frac{1}{\phi_{\mathsf{init}}} \times \frac{H_{\mathsf{inf}}}{2\pi} \right]_{k=aH}$$

 $\Psi^{(\delta\phi)}$ is proportional to ϕ_{init}^{-1}

- \Rightarrow As $\phi_{\rm init}$ becomes smaller, the curvaton contribution becomes larger
- \Rightarrow Cosmic density fluctuations can be dominantly generated from $\delta\phi_{\rm init}$

Shape of $C_l^{(\delta\phi)}$ is consistent with the WMAP result

 $\Psi^{(\delta\phi)}$ becomes (almost) scale invariant if $H_{\rm inf}$ does not change much during inflation

Requirements on the initial value of ϕ

- $\phi_{\rm init}$ should be small to make the curvaton contributions to the fluctuations dominant
- ϕ_{init} should be large enough to realize ϕD epoch

Lower bound on $\phi_{\rm init}$ to realize $\phi {\rm D}$ epoch

In the curvaton scenario, constraints on the inflaton potential change

- Energy scale of the inflation
- Scale-dependence of the primordial fluctuations

Scale dependences of $\Psi^{(inf)}$ and $\Psi^{(\delta\phi)}$ are different!

 $\Psi \propto k^{n-1} \sim (1/\mathsf{scale})^{n-1}$

 \Rightarrow $n = 0.99 \pm 0.04$ (WMAP only)

Spectral index n for chaotic inflation with $V\propto\chi^p$

 $p=2: n \simeq 0.96 \Rightarrow n \simeq 0.98$

p = 4: $n \simeq 0.95 \Rightarrow n \simeq 0.97$

 $p = 6: n \simeq 0.94 \Rightarrow n \simeq 0.95$

For new inflation, change of n is more drastic

⇒ Observational constraints on the inflaton potential can be relaxed!

Requirements on the curvaton field:

• Flat potential to generate primordial fluctuation

 \Rightarrow No Hubble-induced mass term

• High enough reheating temperature $(T_R \gtrsim 1 \text{ MeV})$

3. A Possible Signal: Entropy Fluctuations

Important check point in the curvaton scenario

Entropy fluctuations

In simple inflationary scenarios, all the components in the universe are generated from decay products of inflaton

 \Rightarrow No fluctuation in the entropies (i.e., the density fluctuations become <u>adiabatic</u>)

$$S_{b\gamma} \equiv \frac{\delta(n_b/n_{\gamma})}{n_b/n_{\gamma}} = 0, \quad S_{c\gamma} \equiv \frac{\delta(n_c/n_{\gamma})}{n_c/n_{\gamma}} = 0$$

Effect of (correlated) entropy fluctuations

$$S_{b\gamma} = \kappa_b \Psi_{\text{RD2}}$$

Too large entropy fluctuations are inconsistent with the observation

 \Rightarrow With the WMAP data, $|\kappa_b| \leq 0.5$

If the baryon-asymmetry or the CDM does not originate from ϕ , entropy fluctuation may be generated

- Constraints on the scenario
- Unique signal of the curvaton mechanism

Curvaton mechanism lowers the reheating temperature

- \Rightarrow In order not to overproduce the gravitino after inflation, low reheating temperature is preferred
- \Rightarrow Baryogenesis may become difficult

Possible mechanism of baryogenesis

- Leptogenesis [Fukugita & Yamagida]
- Affleck-Dine mechanism
- • •

If a heavy modulus field (with $m_{\phi} \sim 100$ TeV) plays the role of the curvaton, $T_{\rm RD2} \sim 1-10$ MeV

⇒ The best scenario for the baryogenesis is (probably) the Affleck-Dine mechanism

Affleck-Dine field starts to move when H becomes comparable to its mass $m_{\rm AD}$

 $\Rightarrow S_{b\gamma}^{(\delta\phi)}$ depends when $H \sim m_{\rm AD}$ is realized

- $H \sim m_{\rm AD}$ in RD1 $\Rightarrow \kappa_b \neq 0$
- $H \sim m_{AD}$ in $\phi D \Rightarrow \kappa_b \sim 0$

 $\kappa_b \stackrel{<}{_\sim} 0.5$ (from the WMAP)

$$\Rightarrow \phi_{\text{init}} \sim M_{\text{Pl}} \text{ or } m_{\phi} \gg m_{\text{AD}}$$

[Ikegami & Moroi]

Another possibility: Baryogenesis with the curvaton

 \Rightarrow Right-handed sneutrino \tilde{N} as the curvaton

Baryon-number asymmetry is generated when the right-handed sneutrino decays [Murayama, Suzuki, Yanagida & Yokoyama]

Right-handed sneutrino becomes the origin of the cosmic density fluctuations as well as the baryon asymmetry

 \Rightarrow In the simplest case, $\kappa_b = 0$

One interesting possibility:

Contamination of the photon from the inflaton [Moroi & Murayama]

If \tilde{N} decays soon after the $\phi {\rm D}$ epoch is realized, some fraction of the radiation originates from the inflaton

 \Rightarrow Baryon asymmetry inherits fluctuation from \tilde{N}

 \Rightarrow Small but non-vanishing κ_b may arise

$$\kappa_b = -\frac{9}{2} \frac{1 - f_{\gamma_{\tilde{N}}}}{f_{\gamma_{\tilde{N}}}}$$

 $f_{\gamma_{\tilde{N}}}$: fraction of the photon from \tilde{N}

 $\kappa_b \sim {\cal O}(0.1)$ is possible, which may provide detectable signals at future measurements of the CMB anisotropy

4. Summary

Today, I discussed the curvaton mechanism

- All the cosmic density fluctuations are from primordial fluctuation of the "curvaton" field
- Late-decaying scalar condensation is required

Why curvaton?

- Constraints on the inflation can be relaxed
- There are various scalar fields which may once dominate the universe

In the curvaton scenario, (correlated) entropy fluctuations may be generated

- In some case, entropy fluctuation becomes too large
 - \Rightarrow For example, Affleck-Dine field cannot play the role of curvaton
- In other case, sizable entropy fluctuation may be generated
 - ⇒ Some signal may be found in the future measurements of the CMB power spectrum
- Right-handed sneutrinos are interesting and wellmotivated candidates of the curvaton