

BBN, CMB and Neutrino

Masahiro Kawasaki Research Center for the Early Universe University of Tokyo

Introduction

WMAP Date Release in 2003

http://map.gsfc.nasa.gov/

WMAP (+ Galaxy Survey + etc) Support the Standard Framework of Cosmology Inflation, Lambda-CDM...

Determination of Cosmological Parameters

Cosmological Parameters WMAP only, assuming a falt universe

 $\omega_b \equiv \Omega_b h^2 = 0.024 \pm 0.001$ Baryon $\omega_m \equiv \Omega_m h^2 = 0.14 \pm 0.02$ Matter $h = 0.72 \pm 0.05$ Hubble $n_s = 0.99 \pm 0.04$ Spectral Index $\tau = 0.166^{+0.076}_{-0.071}$ Optical Depth

5% accuracy !

Baryon Density

CMB Angular Power Spec. 2nd Peak

$$\eta = n_b / n_{\gamma}$$

= $(6.5^{+0.4}_{-0.3}) \times 10^{-10}$

Is This Consistent with Big Bang Nucleosynthesis ?

Baryon–Photon Ratio in the CMB

http://background.uchicago.edu/~whu/

O Plan of Talk

- 1. Introduction
- 2. Big Bang Nucleosynthesis
- 3. Discrepancy
- 4. Solutions
- 5. Conclusuins

 Big Bang Nucleosynthesis (BBN)
 Standard BBN
 Theoretical Abundances of Light Elements Only Depend on Baryon-Photon Ratio

 $\eta \equiv \frac{n_b}{n_{\gamma}}$

Primordial Abundances Inferred from Observations

Determine baryon density

○ ● BBN (Theoretical Prediction)

BBN (observational Abundances) He4 $Y_{4}_{ m He} = 0.238 \pm 0.002 \pm 0.005$ Fields, Olive (1998) $Y_{^4\mathrm{He}} = 0.2421 \pm 0.0021$ Izotov, Thuan (2003) D $D/H = (2.78 \pm 0.44) \times 10^{-5}$ Kirkman et al (2003) Li7 $^{7}{ m Li/H} = (1.23 \pm 0.34) imes 10^{-10}$ Ryan et at (2000)

O Theory vs Observation

CMB

$$\eta = n_b / n_{\gamma}$$

= $(6.5^{+0.4}_{-0.3}) \times 10^{-10}$

BBN ⁷Li, ⁴He Smaller η is favored Cyburt et al (2004) Coc et al (2004)

O Inconsistency

He4 and Li7 are produced more than observed Possible Solutions Systematic Errors in Obs New Physics Photo-Dissociation of Li7 by Decaying Particle Feng, Rajaraman, Takayama (2003) Varying Fine Structure Constant Baryon Number Production after BBN

• Varying Coupling Constant Evidence from QSO Absorption Lines? Transition Frequency ω , e.g. (S1/2 --> P3/2)

$$\omega_i = \omega_{i,0} + q_i$$

Many Multiplet Method

Dzuba et al (1999) Webb et al (1999)

use different atoms

Evidence for Varying α ?

Murphy et al (2003)

\bigcirc \bigcirc \bigcirc Varing α and BBN

 $\alpha \nearrow \Rightarrow ^{7} \text{Li}$

Assume Larger Fine Structure Constant at BBN

But

 $m_n - m_p = 2.05 \text{ MeV} \ - 0.76(lpha/lpha_0)$ Gasser, Leutwyler (1982) $\Delta m \searrow \Rightarrow n/p \nearrow$

We must reduce He4

Decrease the Abundance of He4
1. Decrease Effective Number of Neutrino N₁

2. Large Lepton Asymmetry

$$N_{\nu} \searrow \Rightarrow H \searrow$$

 $\Rightarrow n/p \searrow \Rightarrow {}^{4}\text{He} \searrow$

$\bigcirc \ \bullet \ N_{\nu}$ Decreases?

Hot Universe Begins at MeV Scale (Neutrinos are not thermalized) MK, Kohri, Sugiyama (1999) (2000)

Dark Radiation from Extra-Dimensions

$$H^2 = \frac{8\pi G}{3}\rho + \rho_{dark}$$

$$N_{\nu} \searrow$$
or \nearrow

e.g. Rundall & Sundrum Model (1999), Shiromizu, Maeda, Sasaki (1999)

\bigcirc \bigcirc \bigcirc Larger α and smaller N_{ν}

Ichikawa, MK hep-ph/0401231

Notice: CMB may also be affected by $\,\alpha$ and N_{ν}

2. Large Lepton Asymmetry

\bigcirc \bigcirc Lager α and Large Lepton Asym.

Notice: CMB may also is affected by α

O Inconsistency

He4 and Li7 are produced more than observed Possible Solutions

- Systematic Errors in Obs
- New Physics
 - Photo-Dissociation of Li7 by Decaying
 Particle
 - Varying Fine Structure Constant
 - Baryon Number Production after BBN

Prediction of Light Element Abundances

Increase the Abundance of He4 Large Lepton Asymmetry

Chemical Potential

$$\begin{aligned} \xi_e < 0 \implies n_{\nu_e} < n_{\overline{\nu}_e} \\ \xi_e \sim \frac{n_L}{n_{\gamma}} \end{aligned}$$

$$p + e^- \leftrightarrow n + \nu_e$$

$$\xi_e \searrow \Rightarrow {}^4\text{He} \nearrow$$

Baryon Injection and Large Lepton Asym

Best Solution $\eta_{add} = 2 \times 10^{-10}$ $\xi_e = -0.4$

Typical Parameters

 $m_{3/2} \simeq 1 \text{ GeV}$ $Q_L \sim 10^{21}$ $T_{\text{L decay}} \sim 10 \text{ GeV}$ $Q_B \sim 10^{25}$ $T_{\text{B decay}} \sim 0.01 \text{ MeV}$ Conclusion

If we take the observational data seriously, there exists some inconsistency between WMAP and BBN Solutions may need exotic assumptions on parameters in BBN such as large lepton asymmetry (neutrino chemical pot.) and extra baryon number injection

We must understand more about systematic errors in the observations