See-saw Mechanism and Neutrino Mass Matrix in GUT

Masako Bando Aichi University

2004.2.22-25

based on the works

in collaboration with

T.Kugo, K.Yoshioka, N. Maekawa

S.Kaneko, M.Obara, M.Tanimoto

Principle

Naturainess

no fine tuning

Seesaw Mechanism

Why is neutrino mass so small?

Existence of Right-handed neutrinos

Small mass

can be derived

Naturally

by seesaW

Bi-large mixing

can it be explained

naturally?

Hint of the origin of bonnel Hierarchy?

Scale Hierarchy in GUT scenario

Strong hierarchy

log scale

Scale Hierarchy in GUT scenario

Strong hierarchy

Mild hierarchy

Scale Hierarchy in GUT scenario

Introduce ...

Family

Horizontal Symmetry 1979 Yanagida san

Quantum

number

We use the same idea (F-N) higher dimensional Operators Anomalous U(1) with SUSY

$$W = y_{ij} F_L^i F_R^j H_u^h \times \left(\frac{\theta}{\Lambda}\right)^{(i+j+h)}$$

$$y_{ij} \approx O(1) \rightarrow y^{ij}_{eff} \equiv y_{ij} \lambda^{(i+j+h)}$$

Hierarchical parameter

$$\lambda = \left(\frac{\langle \theta \rangle}{\Lambda}\right)^{(i+j+h)}$$

Then ... Family Quantum number

members of a multiplet

Common family number

Neutrino MNS Matrix

$$V_{MNS} = U_l^{\dagger} U_{\nu},$$

$$U_l^{\dagger} M_l U_l = \text{diag}(m_e, m_{\mu}, m_{\tau})$$

 $U_{\nu}^{\dagger} M_{\nu} U_{\nu} = \text{diag}(m_{\nu_e}, m_{\nu_{\mu}}, m_{\nu_{\tau}})$

Less hierarchical masses with Two Large Mixing Angles

Problem

Big difference between quarks and leptons!

Hints of family structure?

Standard model ...

members of a multiplet

Common family number

23-large mixing

can it be explained

naturally?

Minimal Matter contents

Standard Symmetry

Simplest Scenario with Family Symmetry

based on the works

in collaboration with

T. Kugo

$$\mathbf{M}_{\mathbf{u}} \approx m_{t} \begin{pmatrix} \lambda^{6-7} & * & * \\ * & \lambda^{4} & * \\ * & * & 1 \end{pmatrix}$$

Quark
Masses
and
mixings

$$\mathbf{M}_{\mathrm{d}} \approx m_{t} \begin{pmatrix} \mathbf{x} & \mathbf{x} \\ * & \mathbf{x} \end{pmatrix}^{4} \quad * \\ * & * \quad \mathbf{x}^{2} \end{pmatrix}$$

$$\mathbf{U}_{\text{CKM}} \approx \begin{vmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{vmatrix}$$

Up Quark Masses

$$\frac{m_{\rm u}}{m_{\rm c}} \approx \lambda^4$$

$$\frac{m_{\rm u}}{m_{\rm u}} \approx \lambda^{6-7}$$

$$X(u_R, c_R, t_R) = (3-4,2,0)$$

$$\lambda^5$$
 λ^3 λ^4 λ^2

$$\frac{m_{\rm d}}{m_{\rm b}} \approx \lambda^4$$

$$\frac{m_{\rm s}}{m_{\rm b}} \approx \lambda^2$$

$$\frac{m_{\rm b}}{m_{\rm b}} \approx \lambda^2$$

Down Quark Masses

If we introduce

$$X(u_R, c_R, t_R) = (3,2,2)$$

Standard symmetry

No relation between quarks and leptons

Simplest Scenario with Family Symmetry

based on the works

in collaboration with T.Kugo

GUT

vvith

Family Quantum number

It is automatical

Quark Masses mixings

 $X(10_1, 10_2, 10_3) = (3, 2, 0)$

$$U_{u_{L}} \approx U_{d_{L}} \approx \begin{bmatrix} \lambda^{|10_{i}-10_{j}|} \end{bmatrix}$$

$$U_{CKM} \approx \begin{bmatrix} \lambda & \lambda & \lambda^{3} \\ \lambda & 1 & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1 \end{bmatrix}$$

Down Quark charged leptons

$$X(5_{1}^{*},5_{2}^{*},5_{3}^{*}) = (3,2,2)$$

$$Q_{L} \quad \begin{bmatrix} 3 & 2 & 2 \end{bmatrix} d_{R}$$

$$\mathbf{M}_{d} \approx \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} \begin{pmatrix} \lambda^{4} & \lambda^{3} & \lambda^{3} \\ \lambda^{3} & \lambda^{2} & \lambda^{2} \\ \lambda & 1 & 1 \end{pmatrix} \lambda^{2} m_{t}$$

$$\Rightarrow \mathbf{M}^{\dagger}{}_{l} \approx \begin{pmatrix} \lambda^{4} & \lambda^{3} & \lambda^{3} \\ \lambda^{3} & \lambda^{2} & \lambda^{2} \\ \lambda & 1 & 1 \end{pmatrix} \lambda^{2} m_{t}$$

Neutrino mass matrix

$$X(\nu_{L1}, \nu_{L2}, \nu_{L3}) = (3,2,2)$$

$$\mathbf{M}_{v} \approx (\lambda^{\left|5^{*}_{i}+5^{*}_{j}\right|})$$

$$\approx \begin{bmatrix} \lambda^{2} & \lambda & \lambda \\ \lambda & 1 & 1 \\ \lambda & 1 & 1 \end{bmatrix}$$

SU(5)

 M_{ν}

Thus simple U(1)FN uniquely dictates the forms:

$$\mathbf{U}_{l} \approx m_{b} \begin{pmatrix} \lambda^{2} & \lambda & \lambda \\ \lambda & 1 & 1 \\ \lambda & 1 & 1 \end{pmatrix}$$

Possibly, (Maekawa version) N.Maekawa, PTP 106(2001)401, and others

$$\mathbf{M}_{d} \approx \begin{pmatrix} \lambda^{4} & \lambda^{3} \sqrt{\lambda} & \lambda^{3} \\ \lambda^{3} & \lambda^{2} \sqrt{\lambda} & \lambda^{2} \\ \lambda & \sqrt{\lambda} & 1 \end{pmatrix} \lambda^{2} m_{t}$$

$$\mathbf{M}_{v} \approx \begin{pmatrix} \lambda^{2} & \lambda \sqrt{\lambda} & \lambda \\ \lambda \sqrt{\lambda} & \lambda & \sqrt{\lambda} \\ \lambda & \sqrt{\lambda} & 1 \end{pmatrix} \lambda^{2} m_{3}$$

Up to here 2-3 family structure almost determined!

Question 1

Question 1 Two large mixing angles? Mass ratio ?

- 1 Order of magnitude does not work!
- 2 naturally reproduced?

This sub-matrix should have Its Det of order of ? Non-trivial!

However note that once it is realized.....

1-2large mixing is automatically realized!

Maekawa version (E6)

$$M_{\nu} \approx \begin{pmatrix} \lambda^{2} & \lambda \sqrt{\lambda} & \lambda \\ \lambda \sqrt{\lambda} & \lambda & \sqrt{\lambda} & \lambda^{2} m_{3} \\ \lambda & \sqrt{\lambda} & 1 \end{pmatrix}$$

Which reproduces large mixing angle?

Provable texture				
OK	Simple U(1)FN	atm	atm	m
$\mathbf{M}_{ u}$	$\begin{pmatrix} \lambda^2 & \lambda & \lambda \\ \lambda & 1 & 1 \\ \lambda & 1 & 1 \end{pmatrix}$	$\begin{pmatrix} \lambda^2 & \lambda & \lambda \\ \lambda & 1 & 1 \\ \lambda & 1 & 1 \end{pmatrix}$	$\begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \\ & 1 \end{pmatrix}$	$\begin{pmatrix} \lambda^{2\leq} & & \\ & \lambda & \\ & & 1 \end{pmatrix}$
$\mathbf{M}^{\mathrm{T}}{}_{l}M_{l}$	$\begin{pmatrix} \lambda^2 & \lambda & \lambda \\ \lambda & 1 & 1 \\ \lambda & 1 & 1 \end{pmatrix}$	$\begin{pmatrix} \lambda^8 & & \\ & \lambda^4 & \\ & & 1 \end{pmatrix}$	$\begin{pmatrix} \lambda^2 & \lambda & \lambda \\ \lambda & 1 & 1 \\ \lambda & 1 & 1 \end{pmatrix}$	$ \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} $
Need Little tuning	atm			atm

Can we reproduce the neutrino large mixing out of hierarchical Dirac Masses?

Impossible !!! Unless fine tuning

Needs Zero structure to relate Hierarchical Up quark mass maţrix for Neutrino Dirac Masses

Parallel Family
Structure
Can survive !!!!

$$\mathbf{M}_{v} = m^{T} M^{-1} m$$

$$If (m)_{ij} \propto \lambda^{i} \lambda^{j}$$

$$then$$
 $\mathbf{M}_{v} \propto m$

M.B,S.Kaneko, M.Obara and M.Tanimoto P.L B580(2004) 229

In order to get such desirable neutrino mass matrix

Needs Zero structure to relate Hierarchical Up quark mass matrix to Neutrino Dirac Masses

seesaw enhancement can occur

Tanimoto san

Question 2

Question 2 Origin of difference between 5*and 10?

- 1 Higher dimension or higher GUT?
- 2 naturally reproduced?

GUT charge quantization gauge unification anomaly free set

Doubling same family number

SU(5) SO(10)

E₆

 E_6

Natural scenario to reproduce Family twisting

Non Parallel Family Structure

not a mere repetition

We need some new idea for family structure

Interesting to find the reason

Why the nature choose the world where

10s are governed by King 5*s live in democratic society

Anarchy model, Brane world....

Another Interesting fact is

Even if we start hierarchical Dirac mass, we can reproduce bi-large mixing.

SO(10) with antisymmetric Yukawa, zero structure....

Nature chooses?

Or?

That is a question!

My His Pre-history Yanagida san at Yukawa Indstitute

- SI1995 post YKIS The first SI in Japan Smirnov Lecture
- SI1997 SI1
 Yanagida san talk family twisting structure
- SI1998 pre-SI
 Takayama conf.
 Ramond san at Aspen Center

Yanagida san at Yukawa Institute

Only two physicists Were at the seminor

Yanagida san at SI 1997 SK preliminary data

Atm Neutrino Mass and mixing

Ramond san at Aspen center

F-N family number Works well!

We should make Full use of E6 GUT

Now we know · · · ·

Mixing angles

Almost maximal

large

$$\sin^2 2\theta_{atm}$$

$$\tan^2 \theta_{sol}$$

Mass Differences

$$\frac{\Delta m_{\rm sol}^2}{\Delta m_{\rm atm}^2} \approx \lambda$$

Kugo san can manage exceptional group!

F-N family + Family twisting structure

We can make Full use of E6 GUT