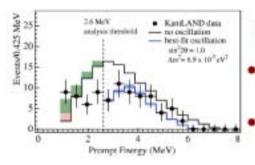
MiniBooNE and Sterile Neutrinos

M. Shaevitz Columbia University SeeSaw Workshop Feb. 23-25,2004

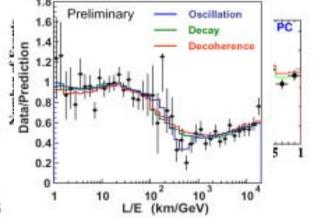

- Extensions to the Neutrino Standard Model: Sterile Neutrinos
- MiniBooNE: Status and Prospects
- Future Directions if MiniBooNE Sees Oscillations

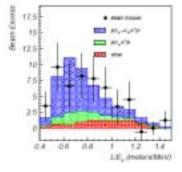
Neutrinos: Open Questions

Issues	Questions	Theorists' Poll*
# of Light Neutrinos	3 active + ? steriles	Three
Majorana vs Dirac	$\nu=\bar{ u}$, 2 vs 4 states per $ u$, L viol.	Majorana
Masses	degenerate, normal/inverted	Seesaw
Mixings	$ heta_{13}, heta_{23} \stackrel{?}{=} \pi/4,$ U real vs complex, CP viol., Leptogenesis	777
Exotics	Non-osc., CPT-V, decays, µ-mom, etc.	None

* From S.Parke, FNAL, Nov 2003: "At least one theoretical prejudice is wrong"

Current Situation

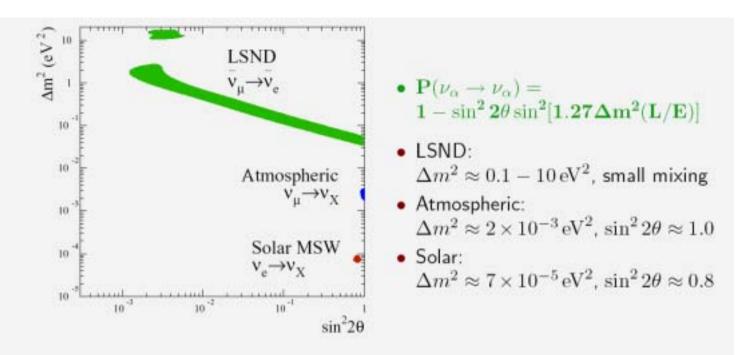


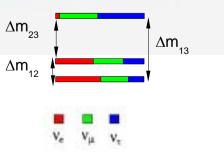

Solar Neutrino Oscillations

- Deficit of ν_e observed from Sun
 CI (Homestake), H₂O ((Super-)K), Ga (GALLEX, SAGE)
 - Confirmation at SNO and KamLAND (reactor $\bar{\nu}_e$)

Atmospheric Neutrino Oscillations

- Zenith angle-dependent deficit of ν_μ: Kamioka, Super-Kamiokande, Soudan, MACRO
- Confirmed by accelerator exp K2K; MINOS will be definitive

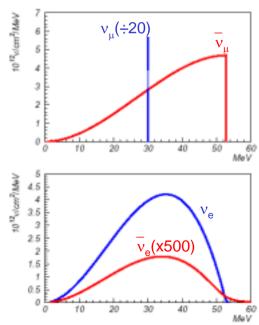



LSND Neutrino Oscillations

- Excess of $\overline{\nu}_e$ in $\overline{\nu}_\mu$ beam produced from μ^+ decay-at-rest
- Unconfirmed by other experiments, but not excluded

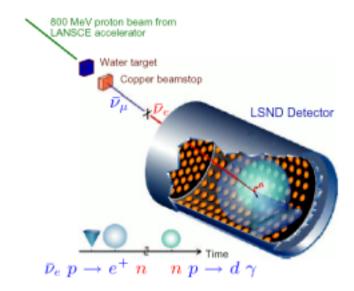
Three Signal Regions

- Three distinct neutrino oscillation signals, with: $\Delta m_{sol}^2 + \Delta m_{atm}^2 \neq \Delta m_{LSND}^2$
- For three neutrinos, expect: $\Delta m_{21}^2 + \Delta m_{32}^2 = \Delta m_{31}^2$!


How Can There Be Three Distinct Δm^2 ?

- One of the experimental measurements is wrong
- One of the experimental measurements is not neutrino oscillations
 - Neutrino decay
 - Neutrino production from flavor violating decays
- Additional "sterile" neutrinos involved in oscillations
- CPT violation (or CP viol. and sterile v's) allows different mixing for v's and $\bar{\nu}'s$

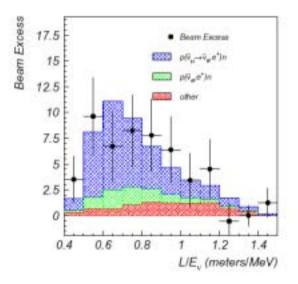
The LSND Experiment


The neutrino source:

- $\bar{\nu}_{\mu}$ from: $\pi^+ \to \mu^+ \nu_{\mu}$ $\hookrightarrow e^+ \nu_e \ \bar{\nu}_{\mu}$
- $E_{\nu} = 20\text{-}53 \text{ MeV}$, $L_{\nu} = 25\text{-}35 \text{ m}$

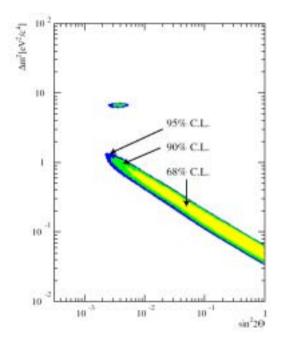
The detector:

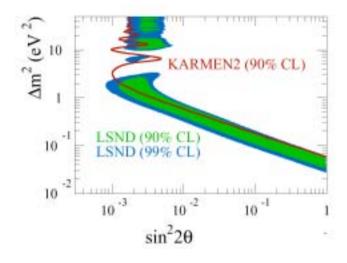
- Liquid scintillator detects both Cherenkov and scintillation light. For $\bar{\nu}_e p \rightarrow e^+ n$:
 - Č+scintillation light from e⁺
 - Scintillation light from n capture



LSND Result

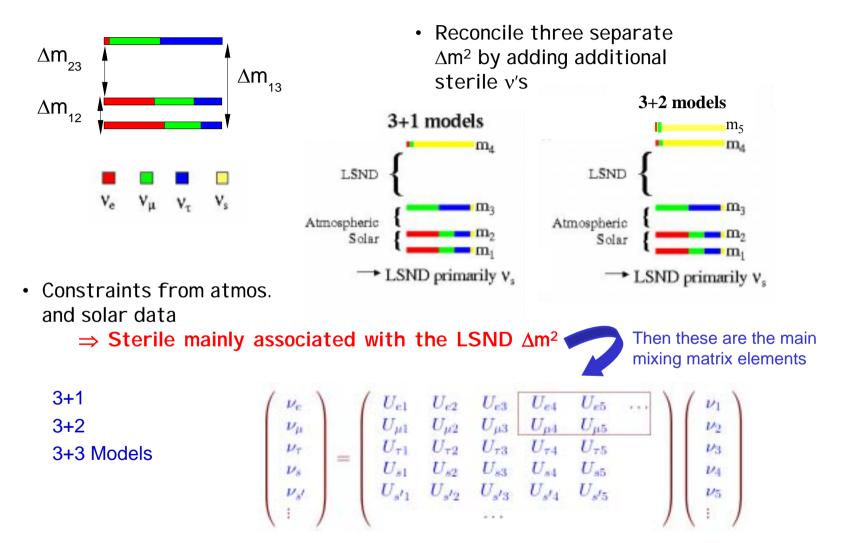
- Excess of candidate \(\bar{\nu}_e\) events
- R_γ parameter defines likelihood that γ is correlated to e⁺. By fitting R_γ:
- 87.9 ± 22.4 ± 6.0 excess (3.8σ)
- $\langle P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \rangle =$ (0.264 ± 0.067 ± 0.045)%




- Clean sample with $R_{\gamma} > 10 \text{ cut}$
- L_v/E_v distribution of the excess agrees well with oscillation hypothesis
- Backgrounds in green, red
- Fit to oscillation hypothesis in blue

KARMEN Experiment

- Similar beam and detector to LSND
 - Closer distance and less target mass \Rightarrow x10 less sensitive than LSND
- Joint analysis with LSND gives restricted region (Church et al. hep-ex/0203023)



- KARMEN also limits $\mu^+ \rightarrow e^+ \ \bar{\nu}_e \nu$ branching ratio: BR < 0.9 x 10⁻³ (90% CL)
- LSND signal would require: 1.9x10⁻³ < BR < 4.0 x 10⁻³ (90% CL)

 $\Rightarrow \mu^+ \rightarrow e^+ \overline{\nu}_e \nu$ unlikely to explain LSND signal

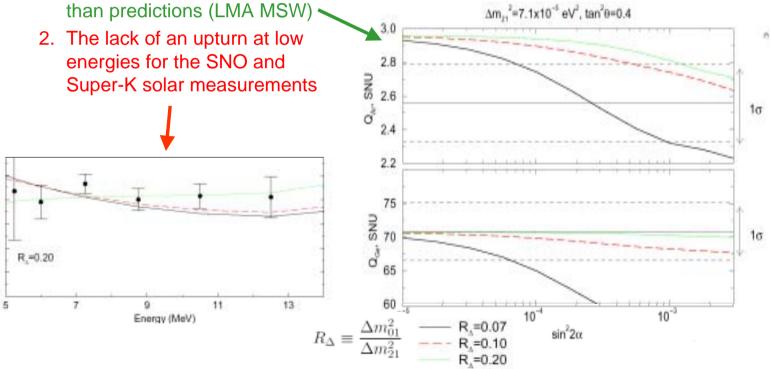
(also will be investigated by TWIST exp. at TRIUMF)

Adding Sterile Neutrinos to the Mix

Also Proposals for Sterile v's in Solar Spectrum

- Sterile neutrino component in the ٠ solar oscillation phenomenology Smirnov et al. hep-ph/0307266
 - Proposed to explain:

Super-Kamiokande rate

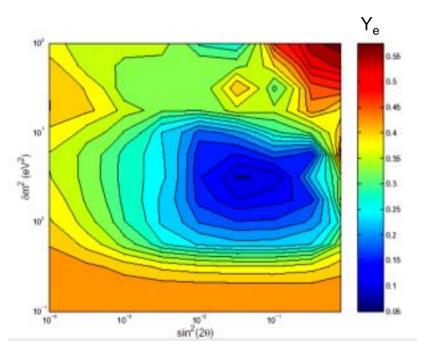

0.48 0.46

0.44

0.42

0.40 0.38 1. Observed Ar rate is 2σ lower than predictions (LMA MSW)

- Explain with a light sterile
 - $\Delta m^2 \sim (0.2 \text{ to } 2) \times 10^{-5} \text{ eV}^2$ $\sin^2 2\alpha \sim (10^{-5} \text{ to } 10^{-3})$

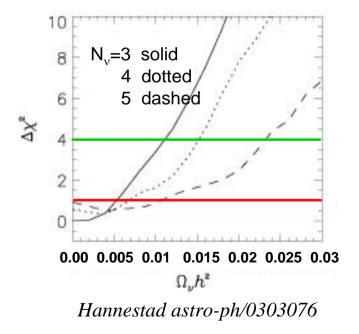

Sterile v's and the r-process in Supernovae

 Heavy element (A>100) production in supernova (i.e. U) through rapid-neutron-capture (r-process)

(i.e. Patel & Fuller hep-ph/0003034)

- Observed abundance of heavy elements
 - Much larger than standard model prediction since available neutron density is too small
- Required neutron density can be explained if oscillations to sterile neutrinos
 - Then matter effects can suppress the v_e with respect to v_e which can then produce a substantial neutron excess

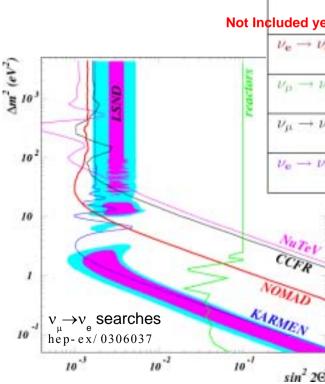
$$\bar{\nu}_e + p \rightleftharpoons e^+ + n, \ \nu_e + n \rightleftharpoons e^- + p$$



 $Y_e = 1/(1+(n/p))$ (Y_e small has neutron excess)

Sterile Neutrinos: Astrophysics Constraints

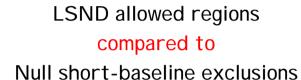
- Constraints on the number of neutrinos from BBN and CMB
 - Standard model gives N_v=2.6±0.4 constraint
 - If ⁴He systematics larger, then N_v =4.0±2.5
 - If neutrino lepton asymmetry or non-equilibrium, then the BBN limit can be evaded.
 K. Abazajian hep-ph/0307266 G. Steigman hep-ph/0309347
 - "One result of this is that the LSND result is not yet ruled out by cosmological observations." *Hannestad astro-ph/0303076*


- Bounds on the neutrino masses also depend on the number of neutrinos (active and sterile)
 - Allowed Σm_i is 1.4 (2.5) eV
 4 (5) neutrinos

Experimental Situation: Fits of 3+1 and 3+2 Models to Data

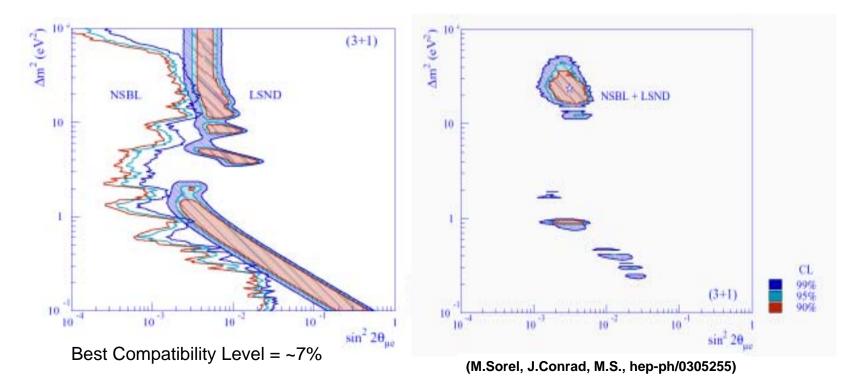
Channel Francisco 1 Laurent A 2

 Global Fits to high ∆m² oscillations for the SBL experiments including LSND positive signal.

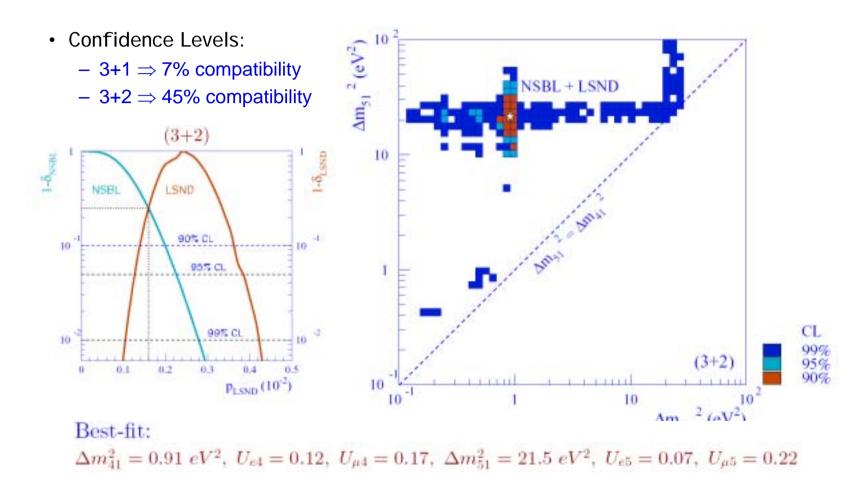


	Channel	Experiment	Lowest Δm^2	sin ⁻ 20 Constraint (90% CL)	
		0.5%	Reach (90% CL)	High Δm^2	Optimal Δm^2
	$\nu_{\mu} \rightarrow \nu_{e}$	LSND	$3 \cdot 10^{-2}$	$> 2.5 \cdot 10^{-3}$	$> 1.2 \cdot 10^{-3}$
		KARMEN	$6 \cdot 10^{-2}$	$<1.7\cdot10^{-3}$	$<1.0\cdot10^{-3}$
: In	cluded yet	NOMAD	$4 \cdot 10^{-1}$	$<1.4\cdot10^{-3}$	$<1.0\cdot10^{-3}$
	$\nu_e \rightarrow \nu_q$	Bugey	$1 \cdot 10^{-2}$	$< 1.4 \cdot 10^{-1}$	$< 1.3 \cdot 10^{-2}$
L'enclosed	01040 10A	CHOOZ	$7 \cdot 10^{-4}$	$< 1.0 \cdot 10^{-1}$	$< 5 \cdot 10^{-2}$
	$\nu_{\mu} \rightarrow \nu_{\mu}$	CCFR84	$6 \cdot 10^{0}$	none	$< 2 \cdot 10^{-1}$
		CDHS	$3 - 10^{-1}$	none	$< 5.3 \cdot 10^{-1}$
	$\nu_{\mu} \rightarrow \nu_{\tau}$	NOMAD	$7 \cdot 10^{-1}$	$< 3.3 \cdot 10^{-4}$	$< 2.5 \cdot 10^{-4}$
		CHORUS	$5 \cdot 10^{-1}$	$< 6.8 \cdot 10^{-4}$	$<4.5\cdot10^{-4}$
	$\nu_e \rightarrow \nu_\tau$	NOMAD	$6 - 10^{0}$	$<1.5\cdot10^{-2}$	$< 1.1 \cdot 10^{-2}$
	and the second	CHORUS	$7 \cdot 10^{0}$	$<5.1\cdot10^{-2}$	$< 4 \cdot 10^{-2}$

- Only LSND has a positive signal
 - CDHS near detector 2σ low also contributes
- Is LSND consistent with the upper limits on active to sterile mixing derived from the null short-baseline experiments? (M.Sorel, J.Conrad, M.S., hep-ph/0305255)


1 2 00 Constanting (000/ CI)

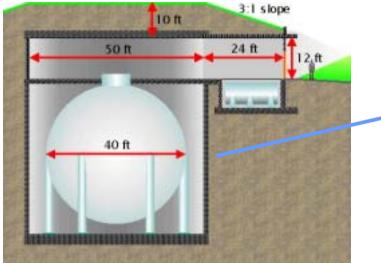
3 + 1 Model Fits to SBL Data



- Doing a combined fit with null SBL and the positive LSND results
 - Yields compatible regions at the 90% CL

Best-fit: $\Delta m^2 = 23.8 \ eV^2$, $U_{e4} = 0.13$, $U_{\mu 4} = 0.22$

Combined LSND and NSBL Fits to 3+2 Models


(M.Sorel, J.Conrad, M.S., hep-ph/0305255)

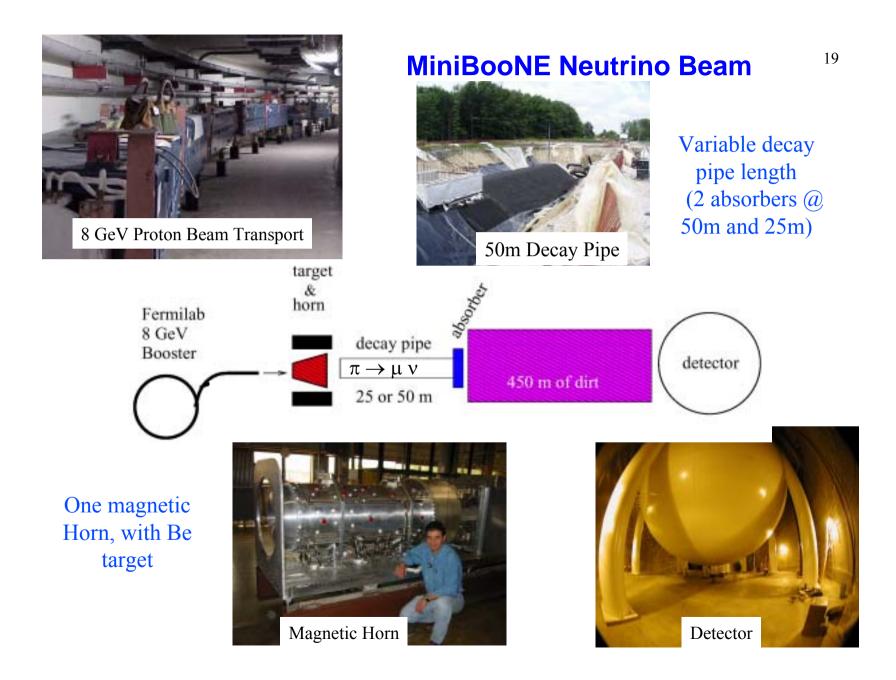
Next Step is MiniBooNE

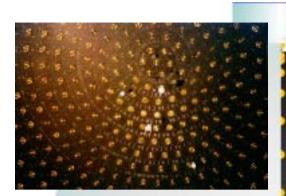
- MiniBooNE will be one of the first experiments to check these sterile neutrino models
 - Investigate LSND Anomaly
 - Is it oscillations?
 - Measure the oscillation parameters
 - Investigate oscillations to sterile neutrino using v_{μ} disappearance

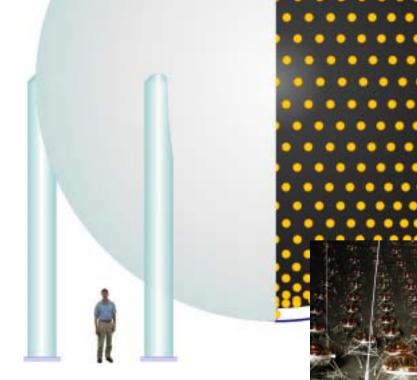
MiniBooNE Experiment

Use protons from the 8 GeV booster \Rightarrow Neutrino Beam $\langle E_{v} \rangle \sim 1$ GeV

12m sphere filled with mineral oil and PMTs located 500m from source

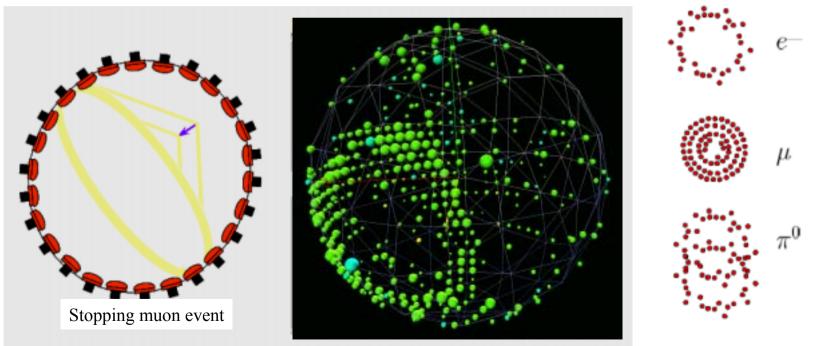



MiniBooNE Collaboration



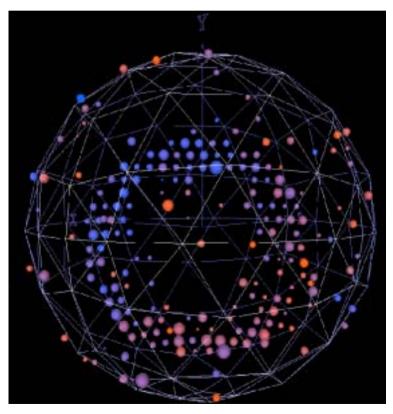
MiniBooNE consists of about 70 scientists from 12 institutions.

- Y. Liu, I. Stancu Alabama
- S. Koutsoliotas Bucknell
 - E. Hawker, R.A. Johnson, J.L. Raaf Cincinnati
- T. Hart, R.H. Nelson, E.D. Zimmerman Colorado
- A. Aguilar-Arevalo, L.Bugel, L. Coney, J.M. Conrad,
- J. Formaggio, J. Link, J. Monroe, K. McConnel,
- D. Schmitz, M.H. Shaevitz, M. Sorel, L. Wang,
- G.P. Zeller Columbia
- D. Smith Embry Riddle
 - L.Bartoszek, C. Bhat, S J. Brice, B.C. Brown,
 - D.A. Finley, B.T. Fleming, R. Ford, F.G.Garcia,
 - P. Kasper, T. Kobilarcik, I. Kourbanis,
 - A. Malensek, W. Marsh, P. Martin, F. Mills,
 - C. Moore, P. Nienaber, E. Prebys,
 - A.D. Russell, P. Spentzouris, R. Stefanski,
 - T. Williams Fermilab
- D. C. Cox, A. Green, H.-O. Meyer, R. Tayloe Indiana
 - G.T. Garvey, C. Green, W.C. Louis, G.McGregor,
 - S.McKenney, G.B. Mills, V. Sandberg,
 - B. Sapp, R. Schirato, R. Van de Water,
 - D.H. White Los Alamos
- R. Imlay, W. Metcalf, M. Sung, M.O. Wascko Louisiana State
- J. Cao, Y. Liu, B.P. Roe, H. Yang *Michigan*
 - A.O. Bazarko, P.D. Meyers, R.B. Patterson,
 - F.C. Shoemaker, H.A.Tanaka Princeton



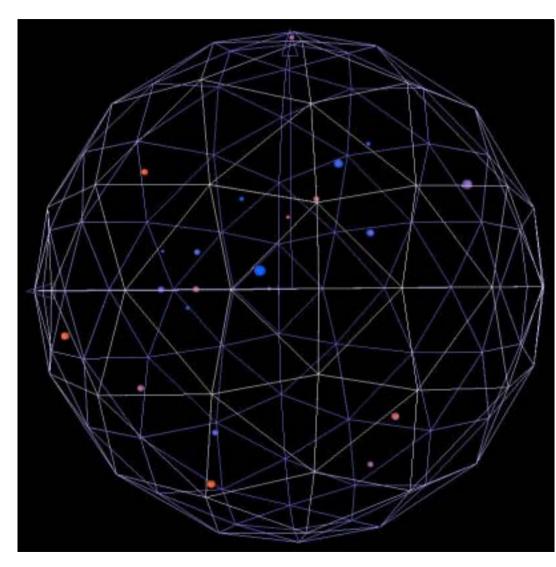
The MiniBooNE Detector

- 12 meter diameter sphere
 - Filled with 950,000 liters (900 tons) of very pure mineral oil
 - Light tight inner region with 1280 photomultiplier tubes
 - Outer veto region with 241 PMTs.
 - Oscillation Search Method:
 - Look for v_e events in a pure v_μ beam

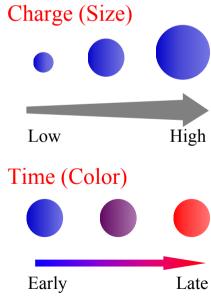

Particle Identification

- Separation of ν_{μ} from ν_{e} events
 - Exiting ν_{μ} events fire the veto
 - Stopping ν_{μ} events have a Michel electron after a few μsec
 - Also, scintillation light with longer time constant \Rightarrow enhanced for slow pions and protons
 - Čerenkov rings from outgoing particles
 - Shows up as a ring of hits in the phototubes mounted inside the MiniBooNE sphere
 - Pattern of phototube hits tells the particle type




Examples of Real Data Events

Charged Current $\nu_{\mu} + n \rightarrow \mu^{-} + p$ with outgoing muon (1 ring)

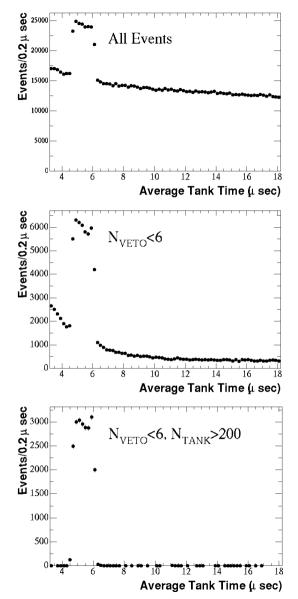

Neutral Current $\nu_{\mu} + n \rightarrow \nu_{\mu} + \pi^{0} + p$ with outgoing $\pi^{0} \rightarrow \gamma\gamma$ (2 rings)

Muon Identification Signature: $\mu \rightarrow e \nu_{\mu} \nu_{e}$ after ~2µsec

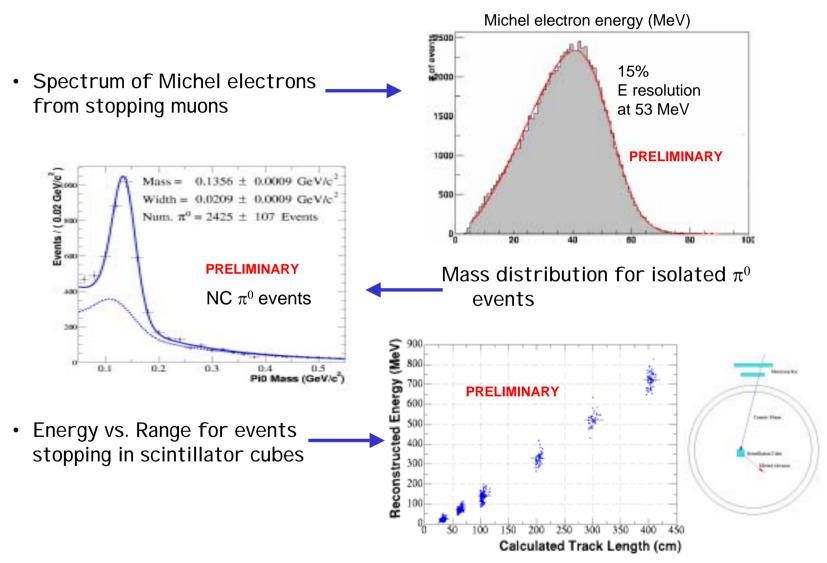
<u>Animation</u> Each frame is 25 ns with 10 ns steps.

Neutrino events

beam comes in spills @ up to 5 Hz each spill lasts 1.6 μsec


trigger on signal from Booster read out for 19.2 μsec; beam at [4.6, 6.2] μsec

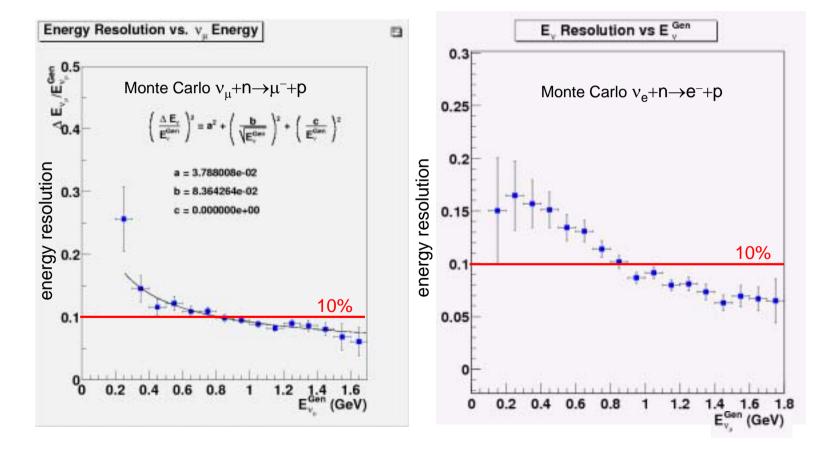
no high level analysis needed to see neutrino events


backgrounds: cosmic muons decay electrons

simple cuts reduce non-beam backgrounds to ~10⁻³

Current Collected data: 220k neutrino candidates for 2 x 10²⁰ protons on target

Energy Calibration Checks



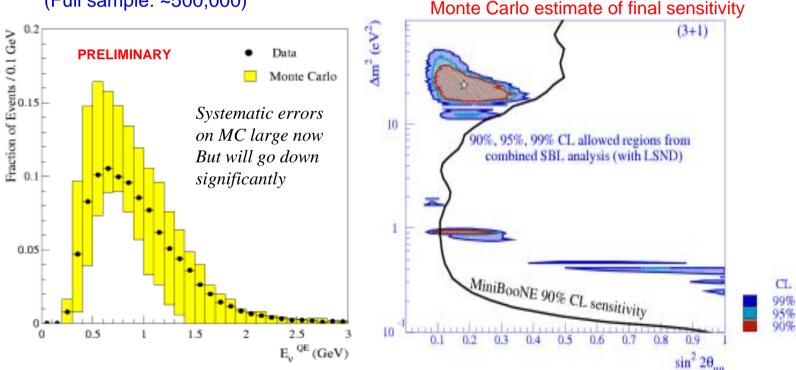
Neutrino Energy Reconstruction

For quasi-elastic events (v_{μ} +n \rightarrow μ^{-} +p and v_{e} +n \rightarrow e⁻+p)

 $\Rightarrow \quad \mbox{Can use kinematics to} \\ \mbox{find } E_{\nu} \mbox{ from } E_{\mu(e)} \mbox{ and } \theta_{\mu(e)} \\ \end{tabular}$

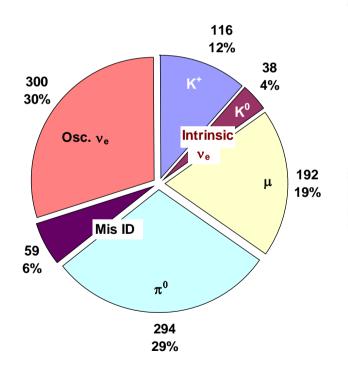
$$E_{\nu}^{QE} = \frac{1}{2} \frac{2ME_l - m_l^2}{M - E_l + P_l \cos \theta_e}$$

Oscillation Analysis: Status and Plans

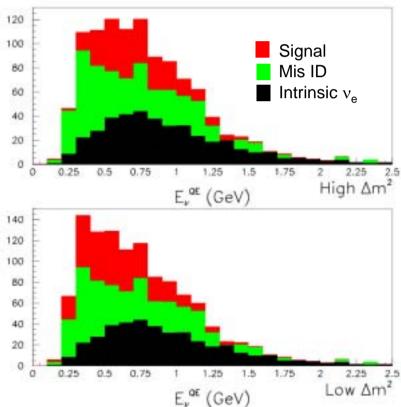

- Blind (or "Closed Box") v_{e} appearance analysis you can see all of the info on some events or some of the info on all events but you cannot see all of the info on all of the events
- Other analysis topics give early interesting physics results and serve as a cross check and calibration before "opening the v_e box"
 - $-v_{\mu}$ disappearance oscillation search
 - Cross section measurements for low-energy v processes
 - Studies of $v_{\mu} \text{ NC } \pi^0$ production \Rightarrow coherent (nucleus) vs nucleon
 - Studies of v_u NC elastic scattering

 \Rightarrow Measurements of Δs (strange quark spin contribution)

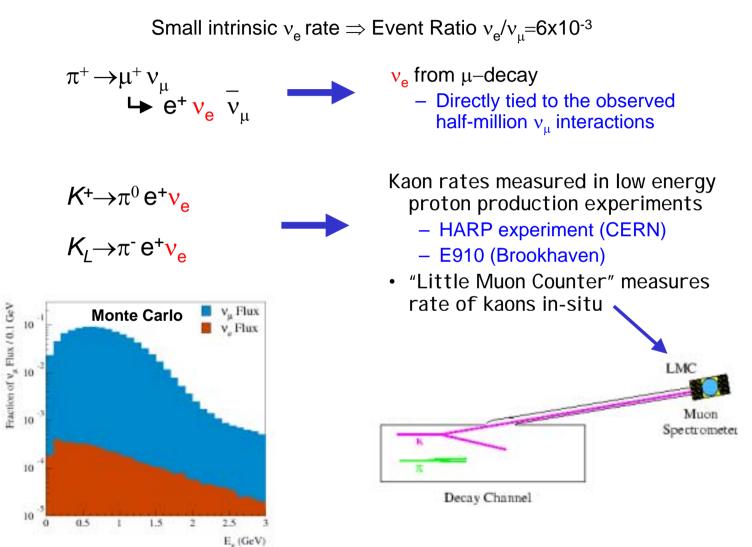
On the Road to a ν_{μ} Disappearance Result


- Use v_{μ} quasi-elastic events $v_{\mu}+n \rightarrow \mu^{-}+p$
 - Events can be isolated using single ring topology and hit timing
 - Excellent energy resolution
 - High statistics: ~30,000 events now (Full sample: ~500,000)

- E_{ν} distribution well understood from pion production by 8 GeV protons
 - Sensitivity to $\nu_\mu \! \to \nu_\mu$ disappearance oscillations through shape of E_ $_{\!\nu}$ distribution

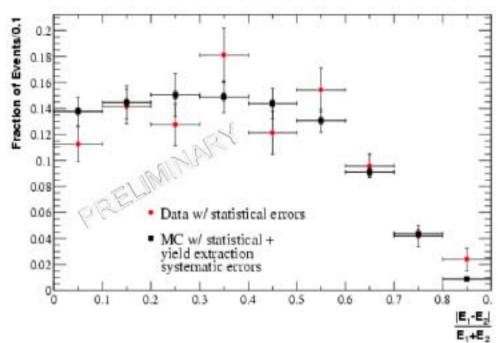


Estimates for the $\nu_{\mu} \! \rightarrow \! \nu_{e}$ Appearance Search


- Look for appearance of v_e events above background expectation
 - Use data measurements both internal and external to constrain background rates

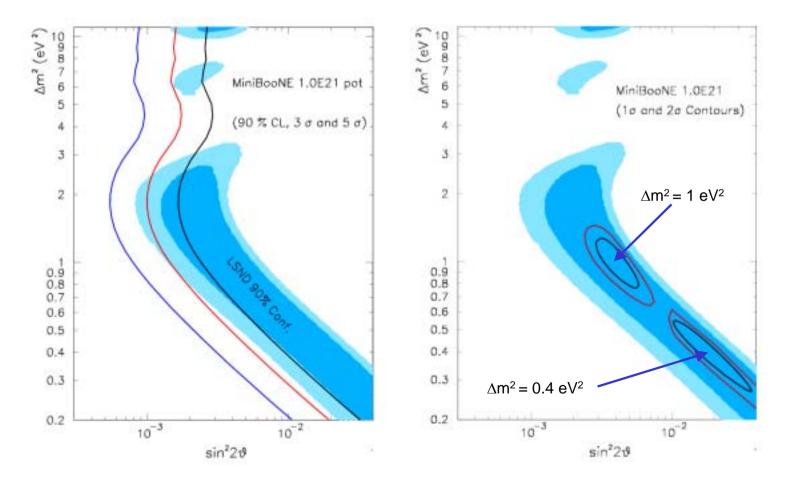
- Fit to ${\rm E}_{\rm v}$ distribution used to separate background from signal.

Intrinsic v_e in the beam



Mis-identification Backgrounds

- Background mainly from NC π^0 production


```
v_{\mu} + p \rightarrow v_{\mu} + p + \pi^{0}
followed by
\pi^{0} \rightarrow \gamma \gamma
where one \gamma is lost
because it is too low
energy
```

- Over 99.5% of these events are identified and the π⁰ kinematics are measured
 - ⇒ Can constrain this background directly from the observed data

MiniBooNE Oscillation Sensitivity

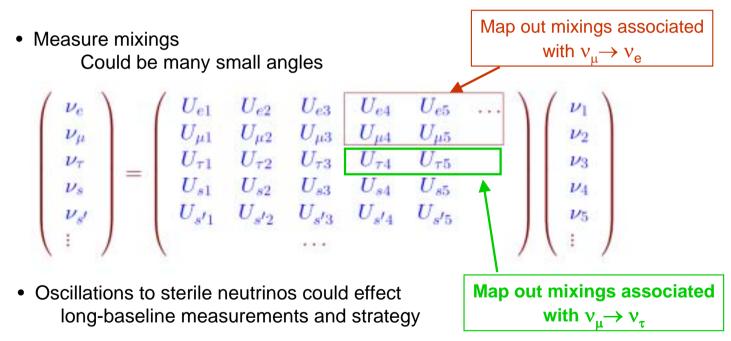
- Oscillation sensitivity and measurement capability
 - Data sample corresponding to 1x10²¹ pot
 - Systematic errors on the backgrounds average ~5%

Run Plan

- At the current time have collected 2x10²⁰ p.o.t.
 - Data collection rate is steadily improving as the Booster accelerator losses are reduced
 - Many improvement being implemented into the Booster and Linac (these not only help MiniBooNE but also the Tevatron and NuMI in the future)
- Plan is to "open the box" when analysis has been substantiated and experiment has collected 1x10²¹ p.o.t.

 \Rightarrow Current estimate is sometime in 2005

- · Which then leads to the question of the next step
 - If MiniBooNE sees no indications of oscillations with ν_{μ}

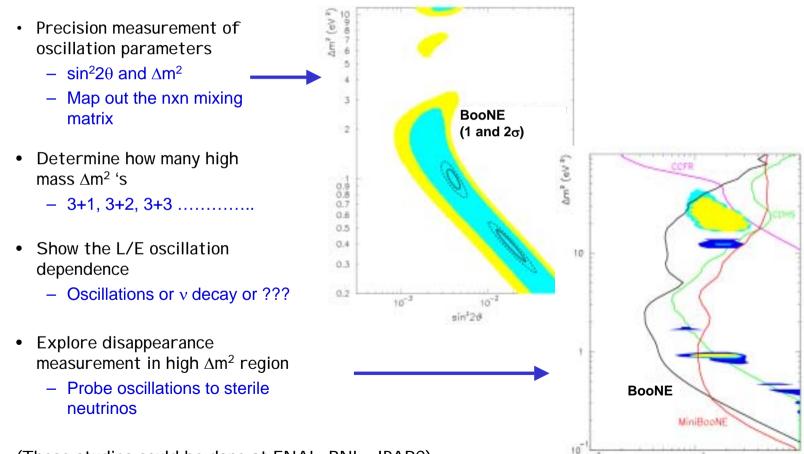

 \Rightarrow Need to run with $\bar{\nu}_{\mu}$ since LSND signal was $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

If MiniBooNE sees an oscillation signal
 ⇒ Then

Experimental Program with Sterile Neutrinos

If sterile neutrinos then many mixing angles, CP phases, and Δm^2 to include

• Measure number of extra masses $\Delta m_{14}{}^2$, $\Delta m_{15}{}^2$...

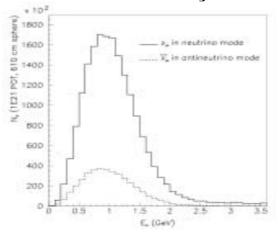


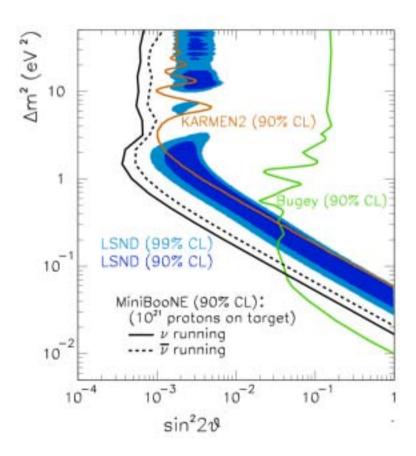
• Compare v_{μ} and \overline{v}_{μ} oscillations \Rightarrow CP and CPT violations

Next Step: BooNE: Two (or Three) Detector Exp.

> Far detector at 2 km for low Δm^2 or 0.25 km for high $\Delta m^2 \leftarrow BooNE$

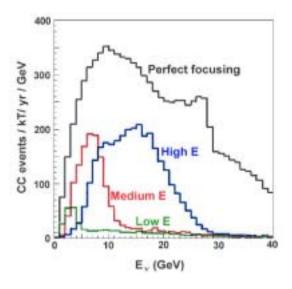
Near detector at ~100m (Finesse Proposal) for disappearance and precision background determination

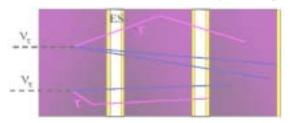

10-2

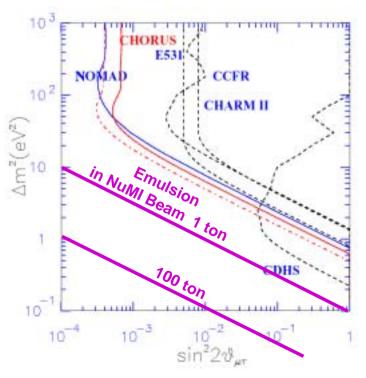

10-1

(These studies could be done at FNAL, BNL, JPARC)

If MiniBooNE sees $v_{\mu} \rightarrow v_{e}$ (or not) then: Run BooNE with anti-neutrinos for $v_{\mu} \rightarrow v_{e}$


- Direct comparison with LSND
- Are v_{μ} and \overline{v}_{μ} the same? – Mixing angles, Δm^2 values
- Explore CP (or CPT) violation by comparing v_{μ} and \overline{v}_{μ} results
- Running with antineutrinos takes about x2 longer to obtain similar sensitivity




Another Next Step: Do $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance Experiment at High Δm^2

- Appearance of ν_τ would help sort out the mixings through the sterile components
- Need moderately high neutrino energy to get above the 3.5 GeV τ threshold (~6-10 GeV)
- Example: NuMI Med energy beam 8 GeV with detector at L=2km (116m deep)

Emulsion Detector or Liquid Argon

Conclusions

- Neutrinos have been surprising us for some time and will most likely continue to do so
- Although the "neutrino standard model" can be used as a guide,

the future direction for the field is going to be determined by what we discover from experiments.

• Sterile neutrinos may open up a whole \mathbf{v} area to explore