

Atsuto Suzuki

KamLAND Collaboration

Outline

- 1. KamLAND Experiment
- 2. Reactor Neutrino Detection
- 3. Solar $\bar{\nu}_e$ Search
- 4. Geoneutrino Detection
- 5. Plan:⁷Be Solar Neutrino Detection
- 6. Conclusions

1. KamLAND Experiment

1,000 ton liquid scintillator neutrino detector

1st phase experiment ($E_{th} = 1.8 \text{ MeV}$) $\overline{v}_e + p \rightarrow e^+ + n$

 Neutrino Oscillation Search by Reactor Anti-neutrinos

O Terrestrial Anti-neutrino Detection

V.

2nd phase experiment ($E_{th} = 300 \text{ keV}$) $v_e + e^- \rightarrow v_e + e^-$

KamLAND Detector

O Detector site : Old Kamiokande site (2700 m.w.e.)

inner view of spherical vessel

data-taking electronics

Kamlan

control system

- * KamLAND construction started : April, 1997
- * Operation started : January, 2002

liquid scintillator purification

Detector Calibrations

Energy scale, Timing, γ detection efficiency,

n capture time, i Trigger efficiency,

Radioactive Sourc Cosmic-ray μ, μ sr

Radioactivity inside Liquid Scintillator

238U: 214Bi
$$\longrightarrow 214Po \longrightarrow 210Pb$$

 $E_{max} = 3.27 MeV \qquad E = 7.69 MeV$
 $\tau = 28.7 min. \qquad \tau = 237 \mu s$

 $X^{2}+Y^{2}(m^{2})$

²¹⁴Bi – ²¹⁴Po – ²¹⁰Pb Signal

 $^{238}U = (3.5 \pm 0.5)x10^{-18} \text{ g/g}$ inside fiducial volume

Nuclear reactors are very intense sources of \overline{v}_e deriving from beta-decay of the neutron-rich fission fragments

Event Rate from Power-Plant Reactors

6 % of world nuclear thermal power Nuclear Power Stations in Japan ~80GW East's Power Development Ca.-some (Commercial plant. Aug. 1999) Number of Events [/year /kt] hoku Einstric Power Co.-Hig kashiwazaki Tohoku Electric Power Co.Mak Power Co.-Taurup 86 % of V events this Row Co.-Mhar from ~ 180 km Atomic Power Co. Drucky Electric Power Co. hamao Q takaham Stee shiga Press Court's DP. BURNUS ukushima Dutput scale Operating station Ender spreitweite Ĕ Ē onagawa niman 50 ugen 0 200 400 800 1000 600 0 Distance from Kamioka [km]

Investigate Solar Neutrino Anomaly Under Laboratory Conditions

2002: 90, 95, 99, 99.73% C.L.

A. Smirnov, v 2002

A. Smirnov, v 2002

One of Japanese Reactors

$\boldsymbol{\bar{\nu}}_e$ Energy Spectrum

\bar{v}_{e} Flux at Kamioka

Reactor $\overline{\nu}_e$ Detection in Liquid Scintillator

reaction process : inverse- β decay $(\overline{v}_e + p \rightarrow e^+ + n)$ + $p \rightarrow d + \gamma$ distinctive two-step signature

$$E_{th} = \frac{(M_n + m_e)^2 - M_p^2}{2M_p} = 1.806 \, MeV$$

• prompt part : e⁺

 \overline{v}_{e} energy measurement $E_{v} \sim (E_{e}) + \Delta J/I + \frac{E_{e}}{M_{p}}I + \frac{\Delta^{2} - m_{e}^{2}}{M_{p}}$ $\Delta = M_{n} - M_{p}$

- delayed part : γ (2.2 MeV)
- tagging : correlation of time, position and energy between prompt and delayed signal

KamLAND e⁺ Prompt Energy Spectrum

PRL 80 (1998)635

data sample : March 4 – Oct. 6, 2002 exposure time : 162 ton•yr (145.1 days)

> inverse β - decay selection > μ -induced spallation event cut

Production Points of Candidate Events

Analysis Summary

$\frac{N_{obs} - N_{BG}}{N_{expected}} = 0.611 \pm 0.085 \text{ (stat)} \pm 0.041 \text{ (syst)}$

99.95 % C.L.

K. Eguchi et al., Phys. Rev. Lett. 90, 021802 (2003)

Ratio of Measured to Expected $\bar{\nu}_e$ Flux from Reactor Neutrino Experiments

Energy Spectrum (E_{prompt} > 2.6 MeV)

data : consistent with

Neutrino Oscillation Study, Combining Event Rate & Energy Spectrum

Before & After KamLAND : 90, 95, 99, 99.73% C.L.

J.N. Bahcall et al., J. High Energy Phys. (2003)

Exclusion C.L.

LOW: 4.8 σ VAC : 4.9 σ

With the results from KamLAND, one can confidently state that the solar neutrino problem was solved, if CPT is invariant

V. Berger et al., Phys. Lett. B555 (2003)

185.5 days data : March 4 – December 1, 2002

Energy Distributions of Prompt & Delayed Events

< 0.028 % of ${}^8B_{\nu}$ (8.3 < E_{ν} < 14.8 MeV)

K. Eguchi et al., Phys. v. Lett. 92, 071301 (2004)

a factor 30 improvement over previous best measurement (SK)

Spin-Flavor Precession :

4. Geoneutrino Detection

Geoneutrino Generation

- Heat Generation inside the Earth
 - -- total heat flow ~ 40 TW ?
 - -- U/Th contribution ~ 16 TW ???

²³⁸U → ²⁰⁶Pb + 8 ⁴He + 6 e⁻ + 6 $\bar{\nu}_e$ + 51.7 MeV ²³²Th → ²⁰⁸Pb + 6 ⁴He + 4 e⁻ + 4 $\bar{\nu}_e$ + 42.7 MeV

 Geochemical Earth Model

 no reliable values of U/Th concentration in Crust, Mantle and Core

 $\overline{\nu}_e$ detection is essential

Geoneutrino Production Points

[U] : 2.7 ppm (C.C.), 0.08 ppm (O.C.), 0.01 ppm (Mantle), 0 (Core) [Th] : 4[U]

Geoneutrino Flux ?

~ $4 \overline{v}_{e}$: ²³⁸U ~ $5 \overline{v}_{e}$: ²³²Th

Radiogenic heat : ~ 40TW (model-dependent)

(0 – 110) TW at 95 % C.L.

 $v_e + e^ v_e + e^-$ ~ $200 \sqrt{\text{kton-day}}$

Present KamLAND

Requirements & Achievements of Radioactive Impurities in Liquid Scintillator

impurities	present	goal	reduction
238U	$(3.5 \pm 0.5) \times 10^{-18} \text{ g/g}$	10 ⁻¹⁶ g/g	()
²³² Th	$(5.2 \pm 0.8) \times 10^{-17} \text{ g/g}$	10 ⁻¹⁶ g/g	۲
40 K	< 2.7 × 10 ⁻¹⁶ g/g	10 ⁻¹⁸ g/g	~10 ⁻²
⁸⁵ Kr	~ 1 Bq/m ³	~ $1 \mu Bq/m^3$	³ 10 ⁻⁶
²¹⁰ Pb	~ 100 Bq/m ³	~ $1 \mu Bq/m^3$	³ 10 ⁻⁶

Physics 1 : Reconfirmation of Oscillation Solution

Physics 2 : Determination of Θ_{12} ?

A.Bandyopadhyay et al., hep-ph/0302243 (2003)

Physics 3 : Test of Standard Solar Model

Reactor neutrino detection strong evidence on disappearance more data for convincing energy deformation

Geoneutrino detection more data

Solar neutrino detection R&D: final stage more funding