K2K and a next-generation neutrino oscillation experiment from J-PARC to Kamioka

Fujihara Seminar "NEUTRINO MASS AND SEESAW MECHANISM" Feb.23-25, 2004

Koichiro Nishikawa Kyoto University

Basic (naïve) Questions

- Larger the mass difference, larger mixing!
 - Three mass eigenvalues : m₁, m₂, m₃
 - $m_2^2 m_1^2 \sim 6 \sim 9 \times 10^{-5} \text{ eV}^2 \qquad \qquad \text{sin}^2 2\theta_{12} \sim 0.55 0.8$
 - $m_3^2 m_2^2 \sim 1.6 3.9 \times 10^{-3} \text{ eV}^2 \qquad \sin^2 2\theta_{23} > 0.9$
- Quark : Larger the mass difference, smaller mixing
 - $\sin\theta_{12} \sim 0.2 \sin\theta_{23} \sim 0.2^2 \sin\theta_{13} \sim 0.2^3$
- Meson
 - $\varphi(ss), \psi(cc), Y(bb)$

-

Goals in the near future

- 1st and 3rd generation mixing
 - $m_3^2 m_1^2 \sim 1.6 3.9 \times 10^{-3} \text{ eV}^2 \quad \sin^2 2\theta_{13} < 0.1 0.2$
 - Is θ_{13} smaller by a factor or order of magnitude?
- 2nd and 3rd generation mixing
 - high precision measurements of θ_{23}
 - how close to the maximal?
- Look for unexpected by high precision measurements of oscillation pattern, 4th 'v'.....
- Key measurements in K2K and improvements for future

K2K(KEK to Kamioka) experiment

Beam direction and its stability

- Long 'expensive' beam line
 - accommodate change in extraction and stabilize targeting <2mm
- Neutrino Beam Steering and its Stability
 - Measurement by neutrino interaction vertex profile <1mrad.
 - Muon profile (from π - μ decay >5GeV μ , spill-by-spill) <1mrad.

Measurements in K2K

Near Detectors at KEK

Prediction of Neutrino events at Far Site

- Near Detectors
 - Intensity
 Energy Spectrum at near
 de-convolution
- Beam MC with pion production model
 - Flux_{far} (E)/Flux_{near} (E)
 - Prediction of neutrino beam at SK
 - Oscillation
 - Prediction of total number of events
 - E_v distribution

neutrino int ⇔ SK events convolution

- **Pion production model**
 - Pion production measurements at ANL in '70
 - v Spectrum at near
 - pion (p,θ) distribution measurement with gas Cherenkov detector

Expected No. of v_{μ} Interactions at Far Site

$$N_{far}^{exp} = N_{near}^{obs} \cdot \frac{\int Flux_{far} \cdot \sigma_{far} \cdot \varepsilon_{far} \cdot dE_{v}}{\int Flux_{near} \cdot \sigma_{near} \cdot \varepsilon_{near} \cdot dE_{v}} \cdot \frac{Mass_{far}}{Mass_{near}}$$

 Measurement by 1KT is Used as normalization
 1KT is 'Same' Type as SK <u>nuclear effects</u> and <u>Same Detection Energy</u> <u>Threshold</u>

→ Cancellation of Systematics errors

$\frac{\sigma}{Far} \approx r$	1 ^E Far	— ≈ 1
σ _{near}	^ɛ near	

- Neutrino Flux Ratio Flux_{far}/Flux_{near} is Calculated with beam MC Tested by Pion Monitor Measurement
- Dominant Systematic Errors are an uncertainty of far-near ratio (~7%) and an uncertainty of 1kt fiducial volume (~4%)
- to go further..... various type of detectors

 v_{μ} Spectrum measurement at Near

Only Flux(Ev) x σ(Ev) will be measured v *Int. Model QE/nonQE ratio and NC/CC*

QE and nQE in SciFi 2track events

SciFi 2 track $cos(\Delta \Theta_P)$ distribution

Fit result of Neutrino Flux at KEK Site

Pion Monitor: Measure Momentum / Angle Dist. of π 's just after Horn/Target π .

Ring Image Gas Cherenkov Detector (Index of Refraction is Changeable)

To Avoid Severe Proton Beam Background, v_{μ} Energy Information above 1GeV is Available (β of 12GeV Proton ~ β of 2GeV π)

Well known π Decay Kinematics +Well Defined Decay Volume Geometry

 $\begin{aligned} \pi & (p_{\pi}, \theta_{\pi}) \text{ can calcurate} \\ \nu_{\mu} & \text{Energy at Near Site and Far Site} \\ \nu_{\mu} & \text{Flux Ratio (Far/Near)} \\ & \text{as a Function of Neutrino Energy} \end{aligned}$

Flow of Neutrino Oscillation Analysis in K2K

Observed $(\mathbf{p}_{\mu}, \theta_{\mu})$ distributions at Near Detectors $\downarrow \lor Int. Model$ Neutrino Spectrum at Near detector $\phi_{near}(E \lor)$, \downarrow Far/Near Extrapolation vs $E\lor \mathbb{R}_{FN}(E\lor)$ Neutrino Spectrum w/o oscillation at SK $\phi_{SK}(E\lor)$ $\phi_{SK}(E\lor) \otimes Oscillation (\sin^2 2\theta, \Delta m^2) \otimes Int. Model$

Prediction ≻N_{SK}(exp't) : Expected no. of SK events ≻ S_{SK}(E_v^{rec}) :1Rµ E_{rec}distribution(shape) SK observation •N_{SK}(obs) •1Rμ E_{rec} distribution

Maximum Likelihood Fit in $(\sin^2 2\theta, \Delta m^2)$

1Rµ shape & Nsk

Comparison of K2K-I result and new result of atmospheric neutrinos in SK-I

SciBar detector in K2K

Barcelona, CNU, Hiroshima, INR, KEK, Kobe, Kyoto, Osaka, Rome-INFN, Saclary, SNU, SUNY, UCI, Washington

- The mixing angles $\theta_{12}, \theta_{23}, \theta_{31}, \delta$?
 - Symmetry of 2nd and 3rd generation?
 - How close θ_{23} to $\pi/4$? extra symmetry?
 - How small the mixing of 1st and 3rd generation?
 - $v_{\mu} \rightarrow v_{e} \text{ exist} \text{Does } v_{e} \text{ contain } v_{3}?$
 - How large is the phase δ ?
 - CP violation in lepton?
 - Is sterile neutrino exist?
 - Fraction in disappearance of v_{μ}
- Look for un-expected with good resolution
- Neutrino beam
 - Suited for water Cherenkov
 - Energy spectrum measurements
 - Good pion production data

JPARC-Kamioka Project

Phase-I (0.75MW + Fully reconstructed Super-K)~K2K x 100 Phase-II (4MW+Hyper-K) ~ Phase-I × 100 26

Energy region

Off-axis neutrino beam

- Highest possible intensity at relevant energy region
 - oscillation maximum at sub-GeV
- v beam suitable for water Cherenkov detector
 - good PID with single particle final state
 - μ -e decay rejection ($\nu_e + n \rightarrow e + p$)
- Narrow band beam to reduce BG
 - Small high energy tail : small nonQE contribution
 - CCQE cross section to obtain neutrino spectrum
 - Neutrinos from main part of π

 $\mathbf{E}_{\mathbf{v}}$ reconstruction resolution

- > Large QE fraction for <1 GeV
- > Knowledge of QE cross sections
- > Beam with small high energy tail

Measurement of $\sin^2 2\theta_{23}$, Δm^2_{23}

 v_{μ} disappearance: How close to the maximal mixing?

Extra handle in v_e appearance search

Intrinsic background: v_e / v_μ (peak) ~ 0.002

NC- π^0 / **CC** ratio at 280m position

2

0

0

0.5

OA2.2

background estimation can be measured at close distance

34

2

(GeV)

1.5

$\sin^2 2\theta_{13}$ from appearance experiment $v_e + n \rightarrow e + p$

Off axis 2 deg, 5 years

sin ² 2θ ₁₃	Background in Super-K				Signal	Signal +	
	ν_{μ}	ν _e	$\overline{\nu}_{\mu}$	\overline{v}_{e}	total	Signai	BG
0.1	12.0	10.7	1.7	0.5	24.9	114.6	139.5
0.01	12.0	10.7	1.7	0.5	24.9	11.5	36.4 ₅

Off axis 2 deg, 5 years

Expected 90% CL sensitivity on θ_{13}

90% CL Exclusion

δ: CP Violation in Pure Leptonic process (Importance of $ν_u → ν_e$)

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j>i} \operatorname{Re}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}) \sin^{2} \frac{(m_{j}^{2} - m_{i}^{2})L}{4E_{\nu}}$$

$$= 2 \sum_{j>i} \operatorname{Im}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}) \sin \frac{(m_{j}^{2} - m_{i}^{2})L}{2E_{\nu}}$$

$$= 0 \text{ for } \alpha = \beta \rightarrow \text{appearance exp!}$$

 $\sim v_{\mu} \rightarrow v_{e}$

- Recent developments toward CPV search
- CPV $\propto \sin\theta_{12} \sin\theta_{23} \sin\theta_{13} \Delta m_{12}^2$ (L/E) $\sin\delta$
- Solar LMA solution (large Δm²₁₂, large θ₁₂)
 Near max. mixing in atmospheric (θ₂₃~π/4)

Summary of Phase-I

Precision measurement of neutrino mixing matrix $\delta (\sin^2 2 \ 23) \leftrightarrow 1\%$ (factor 8 improvement) $\delta (\Delta m^2 23) \leftrightarrow a$ few % (factor 10 improvement) Discovery and measurement of non-zero 13 $\sin^2 2 \ 13 \leftrightarrow 0.006$ (factor 20 improvement) $\frac{1^{st} \text{ Evidence of 3-flavor mixing !}}{1^{st} \text{ step to CP measurement}}$

Schedule & Summary

- Beyond the 'confirmation' of neutrino oscillation
- Best possible measurements of neutrino oscillation with present technology
- World-wide interests to join the experiment
- Possible upgrade in future
 - 4MW Super-JHF + Hyper-K (1Mt water Cherenkov)
 - CP violation in lepton sector

Schematic drawing of Hyper-Kamiokande

1 Mton (fiducial) volume: Total Length 400m (8 Compartments)

<u><u>CP</u> sensitivity (3σ)</u>

 3σ CP sensitivity : $|\delta|$ >20° for sin²2 θ_{13} >0.01 with 2% syst.

Summary

• Presently, underlying parameters were determined with rather poor accuracies

•	Hierarchical masses	Degenerate masses
	$(m_3 > m_2 > m_1)$:	(m ₃ ~m ₂ ~m ₁):
	$- m_3 \sim 0.04 - 0.06 \text{ eV}$	$m_{e}^{} < 2.2 \text{ eV}$
	$- m_2 \sim 0.005 - 0.01 \text{ eV}$	Σm _i < 6.6 eV
	• All 90% C.L.	(95% CL)
•	Neutrinos	Quarks
	$- \sin^2 2\theta_{12} = 0.6 - 0.9$	$\sin^2 2\theta_{12} = 0.188 \pm 0.007$
	$- \sin^2 2\theta_{23} = 0.92 - 1.0$	$\sin^2 2\theta_{23} = 0.0064 \pm 0.0010$

- We are now in the stage of using neutrino oscillation to study leptons with precision measurements
- In a decade or two, θ_{23} , θ_{13} and CP phase δ can be determined comparable accuracy as quarks