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Basic (naïve) Questions

• Larger the mass difference, larger mixing!
– Three mass eigenvalues : m1, m2, m3

– m2
2-m1

2 ~ 6 ~ 9×10--5 eV2 sin22θ12~ 0.55 - 0.8
– m3

2-m2
2~ 1.6 – 3.9×10-3  eV2 sin22θ23  > 0.9

• Quark :  Larger the mass difference, smaller mixing
– sinθ12~0.2    sinθ23~0.22 sinθ13~0.23

• Meson
– φ(ss), ψ(cc), Υ(bb)
– ……..
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Goals in the near future

• 1st and 3rd generation mixing
– m3

2-m1
2 ~ 1.6 – 3.9×10-3 eV2 sin22θ13 < 0.1-0.2

– Is θ13 smaller by a factor or order of magnitude?

• 2nd and 3rd generation mixing
– high precision measurements of θ23 

– how close to the maximal?

• Look for unexpected by high precision measurements of 
oscillation pattern, 4th ‘ν’……

• Key measurements in K2K and improvements for future
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neutrino beam

Super Kamiokande

250km

ΚΕΚ

K2K（KEK　to Kamioka） experiment
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Bird’s Eye Neutrino Beam Line

200m

µ-monitor      direction (π→µ)
Front (Near) Detector direction (ν)

spectrum , rate

12 GeV PS
>5x1013 ppp

2.2sec/pulse
Target/Double Horn
~  20 x flux

100 m
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Beam direction and its stability

• Long ‘expensive’ beam line
– accommodate change in extraction and stabilize targeting <2mm

• Neutrino Beam Steering and its Stability 
– Measurement by neutrino interaction vertex profile  <1mrad.
– Muon profile (from π−µ decay >5GeV µ , spill-by-spill)  <1mrad.
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Measurements in K2K

ν beam 250km
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Spectrum measurements
at two locations

Two reasons of 
different spectrum

• line ↔ point source

• Oscillation
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Near Detectors at KEKKEK
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Prediction of Neutrino events at Far Site

• Near Detectors
– Intensity                                            neutrino int.
– Energy Spectrum at near                de-convolution

• Beam MC with pion production model
– Fluxfar (E)/Fluxnear (E)
– Prediction of neutrino beam at SK
– Oscillation
– Prediction of total number of events        neutrino int     ⇔ SK events
– Eν distribution                                             convolution

• Pion production model
– Pion production measurements at ANL in ‘70

• ν Spectrum at near
• pion (p,θ) distribution measurement with gas Cherenkov detector
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• Measurement by 1KT is Used as normalization
1KT is ‘Same’ Type as SK nuclear effects and Same Detection Energy 
Threshold

→ Cancellation of Systematics errors

• Neutrino Flux Ratio　Fluxfar/Fluxnear is Calculated with beam MC
Tested by Pion Monitor Measurement 

• Dominant Systematic Errors are an uncertainty of far-near 
ratio (~7%) and an uncertainty of 1kt fiducial volume (~4%)

• to go further….. various type of detectors

Expected No. of νµ Interactions at Far Site
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νµ Spectrum measurement at Near

Only Flux(Eν) x σ(Eν) will be measured
ν Int. Model  QE/nonQE ratio and NC/CC

QE
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Soudan 2 Monte Carlo Cross Sections
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Eν reconstruction

CC QE
can reconstruct Eν ←(θµ,pµ)

CC nQE
Bkg.  for Eν measurement

NC 

νµ + n→ µ + p

ν

µ-

p

(Eµ, pµ)θ
µ

νµ + n→ ν + p + π’s

ν

ν

pπ’s

µ-
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QE and nQE in SciFi 2track events

SciFi 2 track cos(∆ΘP) distribution
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Fitting method 
(pµ,θµ) → φ(Eν), nQE/QE

1kt DATA: Pµ vs θµ Distribution
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Fit result of Neutrino Flux at KEK Site
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Pion Monitor:
Measure Momentum / Angle Dist.  of  π’s just after Horn/Target

Well known π Decay Kinematics
+Well Defined Decay Volume Geometry

π (pπ ,θπ ) can calcurate
　 νμEnergy at Near Site and Far   Site　

νμ Flux Ratio (Far/Near)
as a Function of  Neutrino Energy

Ring Image Gas Cherenkov Detector
(Index of Refraction is Changeable)

To Avoid Severe Proton Beam Background,
νμ Energy Information above 1GeV is Available
(β of  12GeV Proton ~ β of  2GeV π)
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π　production 

Good agreement with old 
data. (Cho et.al. in 70’)

Beam MC → Far/Near
Error　assignment

pπ

θπ

w1 w2 w3 w4 …..
: :

: :
pπ, θπ gives two C-light peaks
fit with Σ (wi • C-light) 

index of refraction : pπ threshold
position of ring      : θπ



18

1

10

10 2

10 3

-500 -250 0 250 500

FC

∆(T) µs

ev
en

ts

∆(T) µs

ev
en

ts

0

5

10

15

20

-5 0 5

Super-K Event selection

Tspill TSK

GPS

TSpill: Abs. time of spill start
TSK: Abs. time of SK event
TOF: 0.83ms (KEK to Kamioka)

sec3.1TOF2.0 µ≤−−≡∆≤− SpillSK TTT

No Decay-e

HE Trig.

FC: fully contained 
(No activity in Outer Detector) 
FV: 22.5kt Fiducial Volume

Expected Atm. ν BG 
<10-3 within 1.5µs.

1.5µs

±500µsec

±5µsec
∆T (µsec)

∆T (µsec)

FCFV

56 events
30 1Rµ events ⇒Eν
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Flow of Neutrino Oscillation Analysis in K2K

Observed  (pµ,θµ) distributions at Near Detectors 
↓ ν Int. Model

Neutrino Spectrum at Near detector φ near(Eν), 
↓

Far/Near Extrapolation vs Eν   RFN(Eν)
Neutrino Spectrum w/o oscillation at SK φ SK(Eν)
φ SK(Eν) ⊗ Oscillation (sin22θ,∆m2) ⊗ Int. Model

SK observation
•NSK(obs) 
•1Rµ  Erec distribution

Maximum Likelihood Fit in (sin22θ, ∆m2)

Prediction
NSK(exp’t) : Expected no. of SK events
SSK(Eν

rec) :1Rµ Erecdistribution(shape)
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3d plots of ∆lnL for shape+norm
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1Rµ shape & Nsk
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K2K-I
68%
90%
99%

SK-I
90%

Comparison of K2K-I result and 
new result of atmospheric neutrinos in SK-I

K2K 90%CL
1.5~3.9x10-3eV2

@ sin22θ=1

Atm. 90% CL
sin22θ > 0.9
1.3x10-3 < ∆m2 <3.0x10-3eV2

K2K-II data
being analyzed
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New SciBar detector at K2K
improve spectrum measurement at LE

2.5x1.3x300cm3

High efficiency for short track
• Can detect and ID low 
momentum protons down to 
350 MeV/c.

64chFull Active tracking detector

• Expected # of ν int.
~45,000 (Quasi Elastic:~12,000)

(3×1019 POT)
~15,000 channels

Fine segmented

Fid. volume
(~11ton)
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Barcelona, CNU, Hiroshima, INR, KEK, Kobe, Kyoto, Osaka, 

Rome-INFN, Saclary, SNU, SUNY,  UCI, Washington

SciBar detector in K2K
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• The mixing angles θ12, θ23, θ31, δ ?
– Symmetry of 2nd and 3rd generation?

• How close θ23 to π/4? 　- extra symmetry?
– How small the mixing of 1st and 3rd generation?

• νµ →νe exist – Does νe contain ν3?
– How large is the phase δ?

• CP violation in lepton?
– Is sterile neutrino exist?

• Fraction in disappearance of νµ

• Look for un-expected with good resolution

• Neutrino beam 
– Suited for water Cherenkov
– Energy spectrum measurements
– Good pion production data



26

Phase-I  (0.75MW + Fully reconstructed Super-K)~K2K x 100
Phase-II (4MW+Hyper-K) ~ Phase-I×100

JPARC-Kamioka Project
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Energy region

Pauli Blocking L/E → L>1000km 

non CCQE backgrounds
high E reconstruction resolution with CCQE
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Off-axis neutrino beam

• Highest possible intensity at relevant energy region 
– oscillation maximum at sub-GeV

• ν beam suitable for water Cherenkov detector
– good PID with single particle final state
– µ−e decay rejection (νe + n e + p )

• Narrow band beam to reduce BG
– Small high energy tail : small nonQE contribution
– CCQE cross section to obtain neutrino spectrum
– Neutrinos from main part of π
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Off Axis Beam
(ref.: BNL-E889 Proposal)

WBB w/ intentionally misaligned beam line from det. axis

θTarget Horns Decay Pipe

Far Det.

Decay Kinematics

•Highest intensity at low energy ~4000 int./22.5kt/year (107 sec.)
•Contamination νe:0.8%(0.2% @ peak)
•Low Eν from main part of pion production
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Eν reconstruction resolution
Large QE fraction for <1 GeV
Knowledge of QE cross sections
Beam with small high energy tail 

QE

inelastic

δE~60MeV
~ 10% meaurement

Eν (reconstructed) – Eν (true)

1-sin22θ

non-QE
resolution

∆m2

+ 10% bin 
High resolution : less sensitive to systematics



31
δ(sin22θ)~0.01     δ(∆m2)   ~<1×10-4

Measurement of sin2 2θ23 , ∆m2
23

νµ disappearance: How close to the maximal mixing?

True ∆m23
2 (eV2)

∆m2

sin22θ

FC, 1-ring, µ-like events

Sys. error 10% for near/far

4% energy scale

20% non-QE B.G.

OAB-3o

δ(
∆m

23
2

)

OAB-2o

δ(
si

n2 2
θ 2

3)
MeV

obs./exp.

Attained in
K2K
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Extra handle in νe appearance search
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• Muon monitors @ ~140m
– spill-by-spill monitoring of 

π−beam direction/intensity
• Near detectors @280m

– 0 degree definition
– High stat. neutrino inter. studies

• (Intermediate Detector @ ~2km)
– Ultimate systematics

• Far detector @ 295km
– Super-Kamiokande (50kt)
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NC-π0 / CC ratio at 280m position

@SK

For 10% determination of NC-π0

background estimation can be 
measured at close distance

SK 2.5o

NR 2.2o

SK 2.5o

NR 1.9o
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sin22θ13 from appearance experiment νe + n e + p

totalνeνµνeνµ

36.411.524.90.51.710.712.00.01
139.5114.624.90.51.710.712.00.1

Signal + 
BGSignal

Background in Super-K
sin22θ13
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Expected 90% CL sensitivity on θ13
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10-2 10-1 sin22θ13

K2K
Present

ICARUS
OPERA

J-PARK-SK



37

δ  :  CP Violation in Pure Leptonic process
(Importance of νµ→νe)

=0 for α=β  → appearance exp!

νµ→νe
Recent developments toward CPV search

• CPV ∝ sinθ12 sinθ23 sinθ13 ∆m2
12 (L/E) sinδ

• Solar LMA solution (large ∆m2
12, large θ12)

– Near max. mixing in atmospheric (θ23~π/4)
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★Precision measurement of neutrino mixing matrix
δ ( sin22θ23 )  ••• 1% (factor 8 improvement)

δ ( ∆m2
23 ) ••• a few % (factor 10 improvement)

★Discovery and measurement of non-zero θ13

sin22θ13 ••• > 0.006  (factor 20 improvement)

1st Evidence of 3-flavor mixing !

1st step to CP measurement

Summary of Phase-I
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ν
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Schedule & Summary

• Beyond the ‘confirmation’ of neutrino oscillation
• Best possible measurements of neutrino oscillation with 

present technology
• World-wide interests to join the experiment

• Possible upgrade in future
– 4MW Super-JHF + Hyper-K ( 1Mt water Cherenkov)
– CP violation in lepton sector

2004 2005 2006 2007 2008

MINOS 2yr (oscillation dip)

OPERA 5yr (~20 ντ)

SK full rebuild

JHF-ν construction physics run K2K
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Schematic drawing of Hyper-Kamiokande

1 Mton (fiducial) volume: Total Length 400m (8 Compartments)

Super-K

40
m
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JHF-HK CPV Sensitivity
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Summary 
• Presently, underlying parameters were determined with 

rather poor accuracies
• Hierarchical masses Degenerate masses 

(m3>m2>m1): (m3~m2~m1):
– m3 ~  0.04 – 0.06 eV me < 2.2 eV
– m2 ~ 0.005 – 0.01 eV ∑mi < 6.6 eV

• All 90% C.L. (95% CL) 

• Neutrinos Quarks
– sin22θ12 = 0.6 – 0.9 sin22θ12 = 0.188  ±0.007
– sin22θ23 = 0.92 – 1.0 sin22θ23 = 0.0064±0.0010

• We are now in the stage of using neutrino oscillation to 
study leptons with precision measurements

• In a decade or two, θ23 , θ13 and CP phase δ can be 
determined comparable accuracy as quarks


