Results from SNO

David Sinclair For the SNO Collaboration SeeSaw - 2004

SNO Collaboration

T. Kutter, C.W. Nally, S.M. Oser, C.E. Waltham University of British Columbia

J. Boger, R.L. Hahn, R. Lange, M. Yeh Brookhaven National Laboratory

A.Bellerive, X. Dai, F. Dalnoki-Veress, R.S. Dosanjh, D.R. Grant, C.K. Hargrove, R.J. Hemingway, I. Levine, C. Mifflin, E. Rollin, O. Simard, D. Sinclair, N. Starinsky, G. Tesic, D. Waller
Carleton University

P. Jagam, H. Labranche, J. Law, I.T. Lawson, B.G. Nickel, R.W. Ollerhead, J.J. Simpson University of Guelph

> J. Farine, F. Fleurot, E.D. Hallman, S. Luoma, M.H. Schwendener, R. Tafirout, C.J. Virtue Laurentian University

Y.D. Chan, X. Chen, K.M. Heeger, K.T. Lesko, A.D. Marino, E.B. Norman, C.E. Okada, A.W.P. Poon, S.S.E. Rosendahl, R.G. Stokstad Lawrence Berkeley National Laboratory

M.G. Boulay, T.J. Bowles, S.J. Brice, M.R. Dragowsky, S.R. Elliott, M.M. Fowler, A.S. Hamer, J. Heise, A. Hime, G.G. Miller, R.G. Van de Water, J.B. Wilhelmy, J.M. Wouters Los Alamos National Laboratory S.D. Biller, M.G. Bowler, B.T. Cleveland, G. Doucas, J.A. Dunmore, H. Fergani, K. Frame, N.A. Jelley, S. Majerus, G. McGregor, S.J.M. Peeters, C.J. Sims, M. Thorman, H. Wan Chan Tseung, N. West, J.R. Wilson, K. Zuber **Oxford University**

E.W. Beier, M. Dunford, W.J. Heintzelman, C.C.M. Kyba, N. McCauley, V.L. Rusu, R. Van Berg University of Pennsylvania

S.N. Ahmed, M. Chen, F.A. Duncan, E.D. Earle, B.G. Fulsom,
H.C. Evans, G.T. Ewan, K. Graham, A.L. Hallin, W.B. Handler,
P.J. Harvey, M.S. Kos, A.V. Krumins, J.R. Leslie,
R. MacLellan, H.B. Mak, J. Maneira, A.B. McDonald, B.A. Moffat,
A.J. Noble, C.V. Ouellet, B.C. Robertson,
P. Skensved, M. Thomas, Y.Takeuchi

D.L. Wark Rutherford Laboratory and University of Sussex

R.L. Helmer

A.E. Anthony, J.C. Hall, J.R. Klein University of Texas at Austin

T.V. Bullard, G.A. Cox, P.J. Doe, C.A. Duba, J.A. Formaggio, N. Gagnon, R. Hazama, M.A. Howe, S. McGee, K.K.S. Miknaitis, N.S. Oblath, J.L. Orrell, R.G.H. Robertson, M.W.E. Smith, L.C. Stonehill, B.L. Wall, J.F. Wilkerson University of Washington

Neutrino Oscillations Pre SNO/Super-K

- Theoretical bias is for small mixing
- SeeSaw model gives m_{vi} ~ m_{gi}²
- Bias favoured SMA for solar neutrinos
- SMA + SeeSaw -> m_τ is Dark Matter
- SMA + SeeSaw -> m_τ explains super nova explosions

SNO

- Detector built to solve the Solar Neutrino Problem
- Measure the neutrino flux through 3 reactions:

$$\begin{array}{l} v_e + d \longrightarrow p + p + e^{-} \quad \text{cc} \\ V_e + e^{-} \longrightarrow V_x + e^{-} \quad \text{es} \\ v_x + d \longrightarrow n + p + v_x \quad \text{Nc} \end{array}$$

x means any neutrino type

The SNO Detector

- 1000 Tonnes of D₂O
- 12 M Acrylic vessel
- 10,000 phototubes
- 8000 Tonnes of pure light water
- 2000 m deep in Mine
- World's largest deep cavern
- All materials very pure

3 Phases of SNO

- 1) Run with pure Heavy Water
- 2) Add 0.2% NaCl to enhance NC detection
- 3) Remove NaCl, add Neutral Current Detectors (NCDs)
- Each phase is approx. 2 years

Goal: for NC

Signal/Bkgd >10

SNO Energy Spectrum Pure Heavy Water

Data plotted as function of Direction to Sun – Pure D_2O

Results for Pure Heavy Water

Shape of ⁸B spectrum in CC and ES not constrained:

$$\phi_{\rm NC}^{\rm SNO} = 6.42^{+1.57}_{-1.57}(\text{stat})^{+0.55}_{-0.58}(\text{syst})$$

Constrain CC and ES shape to Ortiz et al

$$\phi_{\rm CC}^{\rm SNO} = 1.76^{+0.06}_{-0.05} (\text{stat})^{+0.09}_{-0.09} (\text{syst}),$$

$$\phi_{\rm ES}^{\rm SNO} = 2.39^{+0.24}_{-0.23} (\text{stat})^{+0.12}_{-0.12} (\text{syst}),$$

$$\phi_{\rm NC}^{\rm SNO} = 5.09^{+0.44}_{-0.43} (\text{stat})^{+0.46}_{-0.43} (\text{syst})$$

Advantages of NaCl for Neutron Detection

- Higher capture cross section
- Higher energy release
- Many gammas

Neutron Capture Efficiency in SNO

Salt allows NC-CC Separation based on Isotropy

$$\beta_1 = \frac{2}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \cos\theta_{ij}$$
$$\beta_4 = \frac{2}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{1}{64} (9 + 20\cos 2\theta_{ij} + 35\cos 4\theta_{ij})$$

 $\beta_{14} = \beta_1 + 4\beta_4$ Sum over all hit phototubes

NC-CC Separation

Isotropy Distributions for Salt Data

Energy Distribution for Salt

Directional Distribution for Salt

Blind Analysis

Three blindfolds for the analysts:

- Include unknown fraction of neutrons that follow muons
- Spoil the NC cross section in MC
- Veto an unknown fraction of candidate events

Backgrounds

Source	No. Events
Deuteron photodisintegration	73.1 +24.0,-25.5
² H(α,α)pn	2.8 +/- 0.7
^{17,18} Ο(α, n)	1.4 +/- 0.9
Fission, atmospheric v's	23.0 +/- 7.2
Terrestrial and reactor v's	2.3 +/- 0.8
Neutrons from rock	<1
24Na activation	8.4 +/- 2.3
Neutrons from CNO v's	0.3 +/- 0.3
Total internal n background	111.3 +/- 25
Internal γ (fission, atm. v)	5.2 +/- 1.3
¹⁶ N decays	< 2.5 (68% CL)
External-source neutrons (from fit)	84.5 +/- 34
Cherenkov events from β - γ decays	<14.7 (68% CL)
"AV events"	< 5.4 (68% CL)

Salt Results

Shape of ⁸B spectrum in CC and ES not constrained:

$$\phi_{\rm CC}^{\rm SNO} = 1.59^{+0.08}_{-0.07} (\text{stat})^{+0.06}_{-0.08} (\text{syst})$$

$$\phi_{\rm ES}^{\rm SNO} = 2.21^{+0.31}_{-0.26} (\text{stat}) \pm 0.10 \text{ (syst)}$$

$$\phi_{\rm NC}^{\rm SNO} = 5.21 \pm 0.27 \text{ (stat)} \pm 0.38 \text{ (syst)}$$

Standard (Ortiz et al.) shape of ⁸B spectrum in CC and ES:

$$\begin{split} \phi_{\rm CC}^{\rm SNO} &= 1.70 \pm 0.07(\text{stat.})^{+0.09}_{-0.10}(\text{syst.}) \\ \phi_{\rm ES}^{\rm SNO} &= 2.13^{+0.29}_{-0.28}(\text{stat.})^{+0.15}_{-0.08}(\text{syst.}) \\ \phi_{\rm NC}^{\rm SNO} &= 4.90 \pm 0.24 \ (\text{stat.})^{+0.29}_{-0.27}(\text{syst.}) \end{split}$$

Salt – Pure D₂O

Constrained

$$\begin{split} \phi_{\rm CC}^{\rm SNO} &= 1.76^{+0.06}_{-0.05}({\rm stat})^{+0.09}_{-0.09}({\rm syst})\,,\\ \phi_{\rm ES}^{\rm SNO} &= 2.39^{+0.24}_{-0.23}({\rm stat})^{+0.12}_{-0.12}({\rm syst})\,,\\ \phi_{\rm NC}^{\rm SNO} &= 5.09^{+0.44}_{-0.43}({\rm stat})^{+0.46}_{-0.43}({\rm syst})\,. \end{split}$$

$$\phi_{\rm CC}^{\rm SNO} = 1.70 \pm 0.07(\text{stat.})^{+0.09}_{-0.10}(\text{syst.})$$

$$\phi_{\rm ES}^{\rm SNO} = 2.13^{+0.29}_{-0.28}(\text{stat.})^{+0.15}_{-0.08}(\text{syst.})$$

$$\phi_{\rm NC}^{\rm SNO} = 4.90 \pm 0.24 \text{ (stat.})^{+0.29}_{-0.27}(\text{syst.})$$

Not Constrained

$$\phi_{\rm NC}^{\rm SNO} = 6.42^{+1.57}_{-1.57}(\text{stat})^{+0.55}_{-0.58}(\text{syst})$$

$$\phi_{CC}^{SNO} = 1.59^{+0.08}_{-0.07} (\text{stat})^{+0.06}_{-0.08} (\text{syst})$$

$$\phi_{ES}^{SNO} = 2.21^{+0.31}_{-0.26} (\text{stat}) \pm 0.10 \text{ (syst)}$$

$$\phi_{NC}^{SNO} = 5.21 \pm 0.27 \text{ (stat)} \pm 0.38 \text{ (syst)}$$

Salt

2-v oscillation region defined by SNO

$\tan^2\theta_{12}$ - Δm_{12}^2 before Salt Phase

Solar Only

Solar+KL rate

Solar+KL spect.

de Holanda & Smirnov, hep-ph/0205241, hep-ph/0212270

Closing in on Δm^2 , θ

Maximal mixing rejected at 5.4 σ

Results from SNO -- Salt Phase

Oscillation Parameters, 2-D joint 1- σ boundary

< 1% probability of LMA I

Marginalized 1-D $1-\sigma$ errors

Maximal mixing rejected at 5.4 σ

 $\Delta m^{2} = 7.1^{+1.2}_{-0.6} \times 10^{-5} \text{ eV}^{2}$ $\theta = 32.5^{+2.4}_{-2.3} \text{ deg}$ $\Delta m^{2} = 7.1^{+1.0}_{-0.3} \times 10^{-5} \text{ eV}^{2}$ $\theta = 32.5^{+1.6}_{-1.7} \text{ deg}$

³He Proportional Counters ("NC Detectors"

Current Status of SNO

NCD's have been installed

Final commissioning in progress

Canadian SeeSaw

AR