V_e appearance search

Yoshihisa OBAYASHI (KEK - IPNS)

ν_{μ} to ν_{e} oscillation search

Three Active Neutrino & Mass Degeneration Scenario $(\Delta m_{12}^2 << \Delta m_{13}^2 \sim \Delta m_{23}^2)$ $P(v_{\mu} \rightarrow v_{e}) = \sin^2(2\theta_{\mu e}) \cdot \sin^2(\frac{1.27 \cdot \Delta m^2 \cdot L}{E})$

 $\sin^2 2\theta_{\mu e} \equiv 0.5 \cdot \sin^2 2\theta_{13}$

- Present Limit: sin²2θ₁₃>10⁻¹@Δm²~3x10⁻³eV²
 - Obtained by CHOOZ (PALO VERDE) experiment
- Neutrino Beam is Essentially Pure Vµ
 - ► (v_µ: v_e~100:0.2@peak)
- Optimum neutrino energy: below 1GeV

Appearance Signal

■ Q.E.V_e C.C. interaction

- No hadron
- No recoiled proton ring
- Single electron shower
 - Single Fussy Ring

e⁺⁻ shower

- Cherenkov Angle ~ 42°
- Ev can be reconstructed

Ve

nihisa OBAYASHI

BG(1): v_{μ} **C.C.** interaction

- Sharp Ring Edge
- Cherenkov Angle < 42°</p>
- Good PID (atm. v study)
- → Easy to reject

BG(2): N.C. π^0 production

V_e selection

SK Atmv official selection (single-ring e-like):

- Fully Contained (No Anti-counter Activity)
- Only one ring is reconstructed
- PID likelihood is e-like (Showering)
- Evis > 100MeV
- No Muon Decay Electron

Number of events for JHF(0.77MW) 5yr exposure to Super-Kamiokande(22.5kt)

	νμ C.C.	νμ Ν.C.	Beam Ve	Osc'd Ve
Generated	10713.6	4080.3	292.1	301.6
1ring e-like	14.3	247.1	68.4	203.7
red. eff.	0.1%	6.1%	23.4%	67.5%

 $\Delta m^2 = 3x10^{-3} eV^2$,

sin²2θμe=0.05

Tight e/\pi^0 separation

Shower direction w.r.t. beam

• $\cos \theta_{ve}$: γ from π^0 tend to have a forward peak

Force to find 2nd ring and...

- **E**(γ_2)/E(γ_1 + γ_2): Large for BG
- Likelihood diff. between 1-ring and 2-rings
- ► Invariant mass: Small for v_e

Expected Backgrounds & Signal

 $\Delta m^2 = 3x10^{-3} eV^2$, sin²20µe=0.05

Number of events for JHF(0.77MW) 5yr exposure to Super-Kamiokande(22.5kt)

	νμ C.C.	νμ Ν.C.	Beam Ve	Osc'd Ve
Generated	10713.6	4080.3	292.1	301.6
1ring e-like	14.3	247.1	68.4	203.7
red. eff.	0.1%	6.1%	23.4%	67.5%
e/π ⁰ sep.	3.5	23.0	21.9	152.2
red.eff.	0.03%	0.6%	7.5%	50.4%
.4 <ev<1.2< td=""><td>1.8</td><td>9.3</td><td>11.1</td><td>123.2</td></ev<1.2<>	1.8	9.3	11.1	123.2
red.eff.	0.02%	0.2%	3.8%	40.8%

Expected Signal & BG distribution

- Reconstruct Ev as Quasi-Elastic interaction
- Apply Energy Cut
 - ► 0.4GeV< E <1.2GeV (OAB2°)

Sensitivity for Mixing Angle

Sensitivities

Sensitive down to sin²2θ_{μe}~3x10⁻³ @∆m²=3x10⁻³eV²

By tuning E_V , sensitive down to $sin^2 2\theta_{\mu e} \sim 5x10^{-3}$ in all allowed Δm^2_{atm}

■ sin²2θ₁₃~1x10⁻² @90% C.L.

Comparison to Other Projects

MINOS:

- High Ev
- ► ν_τCC→τ→e may be a serious BG
- OPERA(,ICARUS)
 - Tuned to find ν_τ
 appearance
 - ► More high Ev
 - Small Far Detector
- JHF neutrino has highest sensitivity in v_e appearance search

Summary

~1 GeV neutrino beam + SK(Water **Cherenkov) is a good solution to search:** $0.01 < \sin^2 2\theta_{13} < 0.1 @ \Delta m_{atm.}^2$ Expected sensitivity: sin²2θ₁₃~ 0.01 @ 90%C.L. v_e appearance sensitivity of JHFnu+SK is higher than MINOS, OPERA.