5/31/01 @JHF-SK nu WS Near detector at 280m from a target

T. Nakaya (Kyoto Univ.)

- 1. Introduction
- 2. Detectors
- 3. Summary

<u>1. Introduction</u>

Purpose of a near detector.

- 1 Measure the quality of neutrino beam.
- 2 Give a constraint to estimate the neutrino flux and the energy spectrum at Kamioka site (or Super-K).
- 3 Study neutrino interactions to estimate background events for oscillation analysis.

Measurements of the ν beam at the near detector.

- 1. Direction
- 2. Flux / Spectrum for ν_{μ} and ν_{e}
- 3. Profile
- 4. Stability
- 5. Event types (QE, single μ , NC π 0 etc..)

Physics Requirement

- v_{μ} disappearance
 - Precise estimation of v_{μ} spectrum at SK.
 - μ energy spectrum in neutrino interactions for various interaction channels (simply QE vs non-QE, π background to fake μ , ...).
- v_e appearance
 - π^0 yield and the momentum distribution as a function of v energy.
 - Beam v_e contamination.
 - High energy tail of v_{μ} spectrum (for BG estimation)?
- v_{τ} confirmation or search for v_s
 - NC cross section as a function of v energy.
 - High energy tail of v_{μ} spectrum

Spectrum extrapolation

2. v detector

- 1. Measure v flux and the spectrum as a function of (x,y).
 - A constraint to the "far/near ratio"?
- 2. Rate: ~5.6 events/spill/100ton (for OAB, NBB is ~1/3)
- 3. $\delta \Delta m^2 = 1 \times 10^{-4} \Leftrightarrow 24 \text{ MeV v energy.}$
- 4. A water target or a water detector is necessary.
- 5. An example: Liquid Scintillator Tracker (for K2K upgrade)
- 6. Muon detector
 - To measure high energy muon up to a few GeV.

NBB1.5 profile and the energy dependence at FD

2001/6/2

OAB2 profile and the energy dependence at FD

2001/6/2

7

One idea of v detector

(3) Liquid Scinti. Fiber Tracker

(2) Water target w/ a detector to measure the vertex.

Muon detector

- (1) 100 ton Water Cherenkov detector
 - For π^0 and NC measurement.
 - High rate capability is not good (<u>only work for NBB</u> or in the lower intensity.).
 - Position dependence vs neutrino energy for OAB?
 - Fiducial Volume error?
- (2) Water target w/ a detector to measure the vertex.
 - Compare the water target to the carbon target.
 - Vertex position has to be determined.

(3) Liquid Scintillator WLS-Fiber Tracker

- The detector is sensitive to low energy v (Ev > 500 MeV).
- High rate capability with fine segments.

(4) Muon detector

- The similar one as K2K will work for NBB.
 - For OAB which has more high energy tail, we need to detect high energy neutrinos to estimate the background events.
- It is difficult to measure higher energy muons (>5GeV/c (4m Fe)) without a magnet.

 \Rightarrow High rate capability with segmentation.

NBB & OAB (without a detector @ a few km)

- With OAB, we need **another detector** at the position of 0 degree for OAB (→ 10m away from the NBB center).
- The v yield of NBB as a function of π energy might be proportional to the π production.
 - \Rightarrow a reliable estimation of π production for OAB?
- NBB energy scan could be crucial to
 - measure the π yield for OAB
 - measure the v cross section at FD
 - NC cross section, π^0 cross section
 - QE and non-QE response $-\mu$ spectrum.

If a detector is at a few km

- Measure the spectrum at a few km.
 - Near/Far ratio is flat.
- At 280m,
 - we measure the neutrino beam profile only.

3. Summary

- To make a proposal, we need to fix the designs of the near detectors.
 - We have to study the estimation and the validation of the far/near ratio with the measurement at FD.
 - We have to study how to measure NC and π^0 which might require a water cherenkov detector.

 \Rightarrow a detector @ a few km.

- Systematic study for NBB energy scan.

Homework by the next workshop?