5/30/01 @JHF-SK Nu WS $v_{\mu} @ v_{\mu}$ disappearance analysis T. Nakaya (Kyoto Univ.)

- 1. Introduction
- 2. Analysis and Result
- 3. Summary and Conclusion

<u>1. Introduction</u>

$P(n_{m} R_{m}) = 1 - \cos^{4}\theta_{13} \sin^{2}2\theta_{23} \sin^{2}(1.27 \Delta m_{23}^{2} L/E)$

• Dm_{23}^{2}

■ Mass is a basic parameter.

■ If $m_3 >> m_2$, the measurement is the mass itself which indicates a scale at high energy. <= GUT

q23

• $q_{23} = \pi/4$ or NOT (several predictions from GUT) > $sin^2 2\theta = 0.93$ (Yanagida and Fukugita) = 0.81-0.96 (J. Pati, hep-ph/0005095) Non standard v oscillation scenario Large Extra Dimension

It is important to measure the oscillation patter.

• Principle of the experiment

- Beam energy is tuned to be at the oscillation maximum.
 - High sensitivity $\Delta m^2 = 1.6 \sim 4 \times 10^{-3} \text{eV}^2$
 - Less background $E_{\rm n} = 0.4 \sim 1.0$ GeV
- $\sim 1 \text{ GeV } \nu$ beam energy is ideal for **Quasi-elastic** interaction.
 - ~60% for WBB, 75~80% for NBB and OAB

v energy reconstruction with an assumption of **quasi-elastic scattering**

2. Analysis and Result

Selection Criteria

- 22.5kton fiducial volume (2m away from the wall)
- Fully Contained Single Ring μ events.
- $P\mu > 300$ MeV/c (We have to check this again).
- #decay electrons < 2

With oscillation,

#events = $3700 \otimes 860 / 5$ years for OAB2 ($\Delta m^2 = 3.5 \times 10^{-3} \text{eV}^2$)

= 1070 **®** 180 / 5 years for NBB-1.5 ($\Delta m^2 = 3.5 \times 10^{-3} \text{eV}^2$)

= 2900 \mathbb{B} 310 / 5 yaers for NBB-3 ($\Delta m^2 = 5 \times 10^{-3} \text{eV}^2$)

- After non-QE BG subtraction, take the ratio between observed spectrum and the expected QE spectrum.
- Fit the ratio by $1-\sin^2 2\theta \cdot \sin^2(1.27\Delta m^2 L/E)$

Sensitivity for several beam configurations.

Sensitivity in the case of $\sin^2 2\theta \neq 1.0$.

Sensitivity is worse by a factor of ~1.3 (stat. only)

3. Systematic Uncertainty (in the case of $\sin^2 2\theta = 1.0$)

1.Non-QE background subtraction. (±20%).

2.Relative flux between FD and SK. ($\pm 10\%$)

3.Non-linearity in energy measurement. $(\pm 3\%)$

- $4.\Phi_{SK}=(1\pm0.04) \Phi(E)_{FD}$, 10% flux increase at 2.5 GeV/c
- 5. Effect by high energy tail is under study now.

Though WBB is systematic dominant, but NBB is not at the oscillation maximum.

3. Summary and Conclusion

Oscillation pattern will be clearly seen.

Sensitivity (goal) could be: $\delta \sin^2 2\theta_{23} < 0.01$ $\delta \Delta m_{23}^2 < 1 \times 10^{-4} eV^2$ at $(\sin^2 2\theta = 1.0, \Delta m^2 = 3.2 \times 10^{-3} eV^2)$

Further Study:

• More systematic errors (from far to near ratio?)