Akira KONAKA (TRIUMF) May 30, 2001 @JHF-SK ν workshop

CP sensitivity in the second phase

- Physics of CP violation in neutrino oscillation
- The second phase detector and the beam
- CP sensitivity
- The unitarity triangle
- Comments on other studies (clarification)

What is exciting about neutrino physics? Door is open now for new physics beyond SM

• A new GUT energy scale at $\sim 10^{16} \text{GeV}$

See-saw mechanism $\frac{1}{M} = \frac{m_{\nu}}{v^2} \sim \frac{3 \times 10^{-3} (eV^2)}{(250 GeV)^2} = \frac{1}{6 \times 10^{15} GeV}$

Flavor texture at GUT scale

Baryon asymmetry of the universe (Leptogenesis)

- \Rightarrow Precision measurement of the mixing parameters: CP violation and the unitarity triangle
- Or beyond neutrino mixing matrix: Extra Dimension Sterile neutrinos (K-K mode)? Does the unitarity triangle close?

 \Rightarrow Oscillation pattern measurement (NC and CC),

- \Rightarrow Test of the **leptonic** unitarity triangle
- \Rightarrow Next generation long baseline ν experiment

Advantage of $\nu_{\mu} \rightarrow \nu_{e}$ appearance

• 3 generation senario

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \qquad \begin{array}{c} \text{Leptonic CKM} \\ \text{(MNS matrix)} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}} \sin \theta_{13} & 0 & e^{i\delta_{CP}} \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• $\nu_e \leftrightarrow \nu_\mu$ is suppressed due to small Δm_{12}^2

$$P(\nu_e \leftrightarrow \nu_\mu)_{12} \sim sin^2 2\theta_{12} cos^2 \theta_{23} sin^2 \frac{1.27 \Delta m_{12}^2 L(km)}{E(GeV)}$$

• Leading contributions from θ_{13} and δ_{CP} :

$$\mathcal{V}_{e} \underbrace{\bigvee_{1}}_{U_{e}} \underbrace{\bigcup_{\mu 1}^{+} (\text{solar})}_{U_{e}} \underbrace{\bigvee_{2}}_{U_{e}} \underbrace{\bigvee_{2}}_{U_{e}} \underbrace{\bigvee_{2}}_{U_{e}} \underbrace{\bigvee_{2}}_{U_{e}} \underbrace{\bigcup_{\mu 3}^{+} (\text{atm.})}_{U_{e}}$$

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &+ 4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) \end{split}$$

CP violation in the neutrino oscillation

$$A_{CP} = \frac{Prob(\nu_{\mu} \to \nu_{e}) - Prob(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{Prob(\nu_{\mu} \to \nu_{e}) + Prob(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}$$
$$= \frac{1.27\Delta m_{12}^{2}L}{E} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot sin\delta$$

- Large A_{CP} (25%) for a typical LMA parameter.
- Fake asymmetry due to matter effect is small because of small E and L for JHF-SK experiment.

$$A_{matter} = \frac{2a}{\Delta m_{31}^2} + 2\frac{aL}{4E} \frac{<\cos\frac{\Delta m_{32}^2 L}{4E}>}{<\sin\frac{\Delta m_{31}^2 L}{4E}>}$$

~ 0.07E(GeV) + 5.3 × 10⁻⁴L(km) $\frac{<\cos\frac{\Delta m_{32}^2 L}{4E}>}{<\sin\frac{\Delta m_{31}^2 L}{4E}>}$

The 2nd phase of JHF-Kamioka project

- Hyper-K and JHF upgrade
 - $\times 200~\nu$ statistics: 1Mt detector and 4MW beam
 - Goal of the 2nd phase:
 - * $sin^2 2\theta_{13}$ sensitivity below 10^{-3}
 - * CP phase δ to 10-20 degrees
 - * Test of the lepton unitarity triangle
 - * Proton decay $(p \to K\nu, e^+\pi^0)$
- If θ_{13} not discovered in the 1st phase

- A factor of $\sqrt{200} = 14$ improvement in statistical uncert. $\Rightarrow 2 \times 10^{-4}$ in $\sin^2 2\theta_{\mu e}$
- Systematic uncertainty becomes important.
- "Peak search" in the oscillation pattern
 ⇒ hope to get around the limit due to systematics.
- If θ_{13} discovered \Rightarrow CP study

CP sensitivity

- Ocillation maximum and low neutrino energy Signal enhancement relative to the backgrounds.
- Double ratio: cancellation of systematic errors

$$\frac{P_{\nu_{\mu} \to \nu_{e}}(far)}{P_{\nu_{\mu}}(near)} / \frac{P_{\bar{\nu}_{\mu} \to \bar{\nu}_{e}}(far)}{P_{\bar{\nu}_{\mu}}(near)}$$

- CP phase δ can be measured down to 10-20 degrees.

CP sensitivity goes up linearly with Δm_{12}^2

CP sensitivity does not depend much on $sin^2 2\theta_{13}$

$$\sin^2 2\theta_{13} = 0.1$$

Overconstrain the Unitarity Triangle

• The 4 coefficients overconstrain the unitarity triangle: $U_{e1}^*U_{\mu 1} + U_{e2}^*U_{\mu 2} + U_{e3}^*U_{\mu 3} = 0$

Comments on other studies (clarification)

Different results on the "optimum E_{ν} /baseline length":

• Comparing $\delta = 90^{\circ}$ only with $\delta = 0^{\circ}$ but not $\delta = 180^{\circ}$ $\delta = 180^{\circ}$ simply corresponds to $\theta_{13} \rightarrow -\theta_{13}$:

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & e^{i\delta_{CP}}\cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- Comparing $\delta = 90^{\circ}$ with $\delta = 0^{\circ}$ and $\delta = 180^{\circ}$ Optimization favours CP-conserving $\cos \delta$ term at high E_{ν}
- Systematic uncertainties are not accounted for:
 - Uncertainties due to other oscillation parameters: e.g. θ_{12} , θ_{13} Important in comparing $\delta = 90^{\circ}$ with $\delta = 0^{\circ}$ and $\delta = 180^{\circ}$ instead of asymmetry.
 - Uncertainty due to matter effect: Fake CP asymm. much larger than signal at high E_{ν} . \Rightarrow Careful study of systematic uncertainty required.
- E_{ν} dependence of backgrounds are not accounted for:
 - Suppressed ν_e contamination at low E_{ν} (less Kaon)
 - NC(π^0) rejection is higher at low E_{ν} due to lower cross section & larger opening angle for $\pi^0 \to \gamma\gamma$.
- E_{ν} dependence of the detector mass is not accounted for: Large mass water Čerenkov is good at low E_{ν}

• $\sim 10 \text{GeV}$ neutrino beam

- Good for studying the matter effect
- Matter effect dominates the ν - $\bar{\nu}$ asymmetry (A_{fake})
- $\cos \delta$ term becomes larger than $\sin \delta$ term
 - $\Rightarrow \delta$ measurement through $\cos \delta$ term?

Summary

• High sensitivity CP search by 4MW-JHF and Hyper-K.

$$A_{CP} = \frac{Prob(\nu_{\mu} \to \nu_{e}) - Prob(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{Prob(\nu_{\mu} \to \nu_{e}) + Prob(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}$$
$$= \frac{1.27\Delta m_{12}^{2}L}{E} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot sin\delta$$

- Large CP asymmetry using the oscillation maximum: Central LMA, $\sin^2 2\theta_{13}=0.01 \Rightarrow A_{CP}=25\%$
- Fake asymmetry due to matter effect is small
- Cancellation of systematic uncertainty by the double ratio:

$$\frac{P_{\nu_{\mu} \to \nu_{e}}(far)}{P_{\nu_{\mu}}(near)} / \frac{P_{\bar{\nu}_{\mu} \to \bar{\nu}_{e}}(far)}{P_{\bar{\nu}_{\mu}}(near)}$$

- CP phase δ down to $10^{\circ} 20^{\circ}$ for LMA& $\sin^2 2\theta_{13} > 0.01$.
- Possibility of overconstrain the unitarity triangle