JHF-SK v WS @Epochal, Tsukuba May. 30, 2001

Neutrino Beam @ JHF

Takashi Kobayashi IPNS, KEK

Contents

- 1. Introduction
- 2. Neutrino Facility
- 3. Neutrino Beam Simulations
 - 1. Neutrino beam @ SK
 - 2. Neutrino beam @ FD
 - 3. Far/near ratio
 - 4. Anti neutrino
- 4. Summary

Requirements on Neutrino Beam

1. As intense as possible

No need to explain

2. Low Energy

Tune peak energy at oscillation maximum Super-Kamiokande Atm. v obs. $\rightarrow \Delta m_{23}^2 = 1.6 \sim 4 \times 10^{-3} \text{eV}^2$

 $\rightarrow E_{\nu} = 0.4 \sim 1 \text{GeV}$

3. Narrow Spectrum

Neutrino Energy Reconstruction using Quasi elastic interaction Non oscillating HE tail makes background

- 4. Small v_e contamination
- 5. Controllability (systematics)

Neutrino Energy Reconstruction

Assume CC quasi elastic (CCQE) reaction

Three Beams

Off Axis Beam (another NBB option)

WBB w/ intentionally misaligned beam line from det. axis

Quasi Monochromatic Beam

Neutrino Facility

Typical 1 year operation $\equiv 10^{21}$ protons on target (POT)

Arc & Final focus

Bend $\sim 85^{\circ}$ to SK direction

50GeV, 110 m curvature →Need super con. mag.

Typical magnet parameters ~4T, ~4m long(to be decided) →need 15~20 dipole magnets

Proton directed 1.25° downward

Decay volume

Beam Dump & μ monitor room

For WBB/OAB

50GeV *p* comes → thick shield Fe:4m, Conc:4.5m →Only μ >8.4GeV reach μ mon. room For NBB μ mon room behind 50cm

Fe shield

 $\rightarrow \mu > 800 \text{MeV}$ can reach

Neutrino Beam

of CC events of various beams

WBB:**5200** CC int./22.5kt/yr NBB: **620** CC int./22.5kt/yr (2GeV/c π tune) OAB: **2200** CC int./22.5kt/yr (2degree)

Peak @ 800MeV~1GeV Sharp peak for NBB/OAB OAB produce very intense "NBB"

OAB/WBB long HE tail

 $v_{\rm e}$ components

Summary of beam simulations

	(GeV)	Flux		$\nu_e/ u_\mu(\%)$		# of interactions		
Beam	E_{peak}	$ u_{\mu}$	$ u_e$	total	E_{peak}	ν_{μ} (/22.5k)	ν_e	
WIDE	1.1	25.5	0.19	0.74	0.34	7000(5200)	78(59)	
$LE1.5\pi$	0.7	5.3	0.05	1.00	0.39	$510(\ 360)$	5.7(4.2)	
$LE2\pi$	0.95	7.0	0.05	0.73	0.15	870(620)	6.8(5.0)	
$LE3\pi$	1.4	8.0	0.05	0.65	0.16	1400(1000)	9.3(6.9)	
OA2°	0.7	19.2	0.19	1.00	0.21	3100(2200)	60(45)	
OA3°	0.55	10.6	0.13	1.21	0.20	1100(800)	29(22)	
(10 ⁶ /cm ² /10 ²¹ POT)						Tot. (CC)		

Beam at FD @ 280m from target

		V_{μ}	$V_{\rm e}$		
	Flux	Ntot	Ncc	Flux	Ntot
$LE2\pi$	9.8	1.8	1.3	7.8	0.015
OA2°	25.6	5.6	4.1	24.5	0.11
WIDE	32.8	12.2	9.0	29.1	0.17

```
FD size: \pm 3m
Unit:
flux for v_{\mu} : 10^{12}/cm^{2}/10^{21}POT
flux for v_{\mu} : 10^{10}/cm^{2}/10^{21}POT
# of int : /100ton.spill (3.3x10<sup>14</sup>ppp)
```


- > Peak energy shift \rightarrow serious syst.
- → dependence of high energy side on FD size → Handle to estimate correction
- Low energy side does not depend on FD size

 $v_{\mu}/\overline{v_{\mu}}$ flux for CPV meas.

 $\overline{\nu}_{\mu}$ flux is almost same as ν_{μ} flux within ~10%

21

of int. for ν
_μ is factor ~3 smaller than ν_μ due to cross section.
 Wrong sign contamination is worse for OAB.

Summary

> Tunable low energy beam tuned at osc. max.

- Primary proton 3.3x10¹⁴ppp, 0.77MW
- > Technical design of facility going on
- >Use super conducting magnets
- ➢ 3 beam configurations
 - \diamond WBB **5200** v_uCC int/22.5kt/yr
 - \Rightarrow NBB 620 v_uCC int/22.5kt/yr
 - \diamond OAB **2200** ν_{μ} CC int/22.5kt/yr
- > beam v_e comtamination $1 \sim 2x10^{-3}$ @ peak
- Start construction 2002 Completion Mar.2007